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Figure 1: The AbstractExplorer interface, rendering over a thousand CHI2024 paper abstracts. (A) Users can select one of five

pre-defined aspects of abstracts to view at a time; Methodology/Contribution is currently selected. (B) Sentences in each abstract

that reflect the selected aspect are shown; users can skim or read laterally [67] across many abstracts, and engage in comparative

close reading at scale. Sentences are segmented into grammatical chunks, categorized into one of the pre-defined roles listed at

the top of the (B) pane, and highlighted by that role’s assigned color. The sentences are ordered by ‘structure’: within each

selected aspect, the most common structure is initially shown by default, e.g., Contribution then System Characteristics
above, but others can be selected. (C) Clicking on a sentence scrolls the full abstract it was extracted from into view in the right

sidebar. (D) Users can use the exact match filter to hide all but a more narrowly scoped set of abstracts, e.g., to only those that

mention ‘VR’. (E) Users can author their own aspects as well, using natural language.
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Abstract

Individual flagship conferences today can have over a thousand
papers; even reading just the abstract of every paper at the lat-
est relevant conference to keep up with the research is time and
memory prohibitive. Previous visualizations in this domain have
ubiquitously followed Shneiderman’s Visual Information-Seeking
Mantra, with details available on demand. However, recently in
other domains, system designers have leveraged Structure-Mapping
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Theory (SMT) to facilitate seeing both the overview and the details
at the same time, facilitating abstraction without losing context. We
compose and evaluate a system, called AbstractExplorer, with
analogous SMT-derived characteristics for the domain of scientific
abstract corpus familiarization. AbstractExplorer has a unique
combination of LLM-powered (1) faceted comparative close reading
with (2) role highlighting enhanced by (3) structure-based ordering
and (4) alignment. An ablation study (N=24) validated that these
features work best together. A summative study (N=16) describes
how these features support users in familiarizing themselves with a
corpus of paper abstracts from a single large conference with over
1000 papers.

CCS Concepts

•Human-centered computing→ Empirical studies in visu-

alization; Interactive systems and tools; Visualization theory,
concepts and paradigms.

Keywords

Structure-Mapping Theory, text, scientific abstracts, reading, sense-
making at scale

ACM Reference Format:

Ziwei Gu, Joyce Zhou, Ning-Er (Nina) Lei, Jonathan K. Kummerfeld, Mah-
mood Jasim, Narges Mahyar, and Elena L. Glassman. 2025. AbstractExplorer:
Leveraging Structure-Mapping Theory to Enhance Comparative Close Read-
ing at Scale. In The 38th Annual ACM Symposium on User Interface Software
and Technology (UIST ’25), September 28–October 01, 2025, Busan, Republic of
Korea. ACM, New York, NY, USA, 25 pages. https://doi.org/10.1145/3746059.
3747773

1 Introduction

The only existing ground-truth mechanism for reasoning about a
corpus of documents is to read every document in the corpus. Un-
augmented reading is a serial process, where connections within
and across documents are made because the reader remembers text
they have previously read in the corpus and, based on that memory,
recognizes a relationship to the current portion of text before them.

Many existing approaches to augmenting humans’ reasoning
about document corpora are lossy, and therefore risk omitting im-
portant context. Non-linguistic lossy representations of documents
are typically designed to preserve what the system creators be-
lieve is most useful for the intended user task(s), e.g., a network
of document-representing dots that preserve citation relationships
across documents while omitting most other content. Zooming into
the otherwise hidden details often means narrowing one’s view to
a small subset of the corpus at a time, replacing a focus on cross-
document relationships with a focus on individual documents.

Lossy linguistic representations can introduce semantic ambi-
guities and misrepresentations [24], such as reducing a definitive
factual statement to a topic. Lossy approaches limit how many
unanticipated user questions the system can help answer, and make
it harder for users to recognize objectively wrong or contextually in-
appropriate choices made about the document or its representation
on their behalf [24].

Recent prior work has shown that it is possible to help people
read and reason about a corpus of short documents without employ-
ing lossy document representations. For example, for collections
of code examples written with similar purposes but using different
libraries, ParaLib [69] used color-coordinated role highlights to
reveal cross-example commonalities and distinctions. The Posi-
tional Diction Clustering (PDC) algorithm identified analogous
sentences across many LLM responses, which were reified both as
color-coordinated cross-document analogous text highlighting (like
ParaLib) and in a novel ‘interleaved’ view where analogous sen-
tences across documents were rendered in adjacent rows to enable
more easy comparison [18]. These examples of text-centric lossless
techniques do not abstract away or summarize; they strategically
re-organize and re-render the existing text to help enhance readers’
own perceptual cognition, informed by Structural Mapping Theory
(SMT) [17].1 The human perceptual, comparative mental machinery
that SMT describes is part of what enables humans to form more
abstract structured mental models from concrete examples, among
other critical knowledge tasks.

This SMT-informed approach, which AbstractExplorer shares,
tries to give this mental machinery “a leg up,” letting users perhaps
skip some steps by accepting reified cross-document relationships
identified by the computer. The revealed variation within these
analogous cross-document relationships can invite the user’s en-
gagement. This is the essence of comparative close reading, a di-
alectical activity [73] that requires repeated deep engagement with
the texts to reveal new insights.

Lossless SMT-informed techniques have yet to be brought to
bear in the context of researchers familiarizing themselves with
a corpus of existing literature, e.g., all (> 1000) paper abstracts at
recent CHI. Most tools assist researchers in this pursuit by helping
them narrow their attention to a manageable set of papers they
can sit down with and serially engage with. These tools often rely
on lossy representations of the entire corpus and give researchers
search affordances to navigate serially through papers of potential
interest in a more informed way.

AbstractExplorer instantiates new minimally lossy2 SMT-
informed techniques for skimming, reading, and reasoning about a
corpus of similarly structured short documents: phrase-level role
classification that drives sentence ordering, highlighting, and spatial
alignment. We demonstrate these features’ utility in the context of
helping researchers’ skim and read closely and laterally [67] across
a corpus of scientific abstracts.

Three studies inform and validate AbstractExplorer’s design:
First, a formative study (Section 3) suggested unmet needs and
interest in our approach to supporting cross-document reasoning.
Second, an ablation study with eye-tracking (Section 5) revealed
that the three key features of AbstractExplorer’s central cross-
sentence relationships pane—sentence order, role-coordinated high-
lighting, and alignment—work best in concert, not alone. Finally, a
summative study (Section 6) describes how researchers used Ab-
stractExplorer to familiarize themselves with a corpus of ∼1000

1Structural Mapping Theory (SMT) is a long-standing well-vetted theory from Cog-
nitive Science that describes how humans attend to and try to compare objects by
finding mental representations of them that can be structurally mapped to each other
(analogies).
2Just the order of sentences within their respective abstracts is abstracted away.
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CHI paper abstracts—reading across a larger and more diverse col-
lection of abstracts and more easily discerning relationships and
distributions across prior work. In summary, we contribute:

• Novel SMT theory-informed text analysis and rendering
techniques for enabling cross-document skimming and com-
parative close reading at scale

• AbstractExplorer, which instantiates these techniques
for familiarizing oneself with a corpus of ∼1000 CHI paper
abstracts.

• Three studies informing and evalutaing the benefits, chal-
lenges, and interactions between these techniques.

2 Related Work

AbstractExplorer extends prior work on tools that support read-
ing and sensemaking at scale as well as text alignment.

2.1 Tools for Close Reading

Close reading refers to the “conscientious analyzation and interpre-
tation” of text [32], while distant reading [49] avoids serially reading
documents by looking at alternative summaries such as counting,
graphing, and mapping of text [61]. Distant reading tools often em-
ploy very lossy approaches, e.g., visualizations of documents that
abstract text into topics, such as Hierarchical Topic Maps [63], and
do not preserve entire sentences, such as displaying word pairs in
a word cloud [11, 70]. Distant reading tools do not support compar-
ing documents at the textual level one needs during close reading.
They are also not necessarily superior in terms of cognitive load or
more ’unbiased’ in their presentation of data, either: large network
graphs and scatterplots are known to impose significant cognitive
demands [39, 71] and can introduce perceptual biases [66].

Close reading is an important yet cognitively demanding task
in scholarly activities [60] and beyond [55]. Close reading requires
reasoning about context; for example, ClioQuery [26] assists his-
torians with investigating queries in context through linked views
and text highlighting. While not specifically designed for close
reading, many tools have been designed to support reading ac-
tivities within or anchored by a single document, e.g., support-
ing comprehension, information foraging, and reading efficiency.
For example, GP-TSM [24] helps readers read more efficiently by
modulating text saliency while preserving grammar. Varifocal-
Reader [36] supports skimming by presenting abstract summaries
alongside the source document, with machine-learned annotations
highlighting key sentence segments in different colors. Scim [15]
helps readers skim academic papers by using colored highlights
to guide attention to predefined content types, such as “Objective”
and “Method.” Qlarify [14] allows scholars to specify additional in-
formation needs while reading an abstract, dynamically expanding
it with relevant content from the full paper. While still anchored
on a single document, the Semantic Reader project [43] supports
features that bring information from related papers into the focal
paper’s reading environment. For example, Relatedly [54], part
of the Semantic Reader project, highlights unexplored dissimilar
information in related work sections of unread papers while low-
lighting previously seen information. As such, while the Semantic
Reader can reason over document collections, we still consider it a
document-centric [23] reading tool.

When working with document corpora, these prior reading sys-
tems leave users to manually organize documents using their lim-
ited working memory; AbstractExplorer instead lays out the
contents of the corpus in a way that, given its cognitive-theory-
informed design, may work with humans’ limited working memory
while reading.

2.2 Text Alignment

Text alignment refers to the process of finding correspondences—
similar and diverging patterns—among two ormore pieces of text [72].
Methods often segment text into smaller, comparable units and align
segments to highlight shared patterns and individual divergences.
The alignment step is often cast as a sequence alignment problem,
using methods such as edit distances [10] or common grammat-
ical pattern identification [59]. Cross-sentence relationships are
often rendered using matrices [48, 76], trees [65], and graphs [25].
However, these approaches can only handle sentences with at least
some closely matched structure and overlapping diction.

Some work has explored aligning larger pieces of text, including
websites [3], books [56], and passages [13]. However, given that the
typical purpose of this work is for machine-powered functions, e.g.,
obtaining parallel corpora for machine translation or plagiarism
detection, renderings for human consumption are not a focal point.

Some alignment strategies aim to scale up the alignment process
to more (but not necessarily long) texts. For instance, Tempura [68]
employs “structural templates” based on linguistic features to orga-
nize short diverse search queries into representative groups. Gero
et al. [18] addresses the challenge of aligning a large set of similar
yet varying multi-sentence LLM responses with Positional Diction
Clustering (PDC), an algorithm that identifies analogous sentences
across documents based on shared diction and position within their
respective documents. However, the PDC approach ignores purpose
at both the sentence and sub-sentence level; by leveraging purpose,
AbstractExplorer, can handle more diverse short documents, i.e.,
abstracts written by different authors about very different topics.

In summary, while scientific abstracts, especially within the same
community, lack the linguistic consistency required by previous
methods, they make up for it in the common purposes that sen-
tences and phrases within sentences fulfill. AbstractExplorer
reframes text alignment as a semantic role labeling task, using
spatial alignment, color, and proximity to help humans perceive
simultaneous text alignment across hundreds of diverse abstracts.

2.3 Text-Centric Tools for Sensemaking over

Document Corpora via Shared Structure

Prior systems have employed structure to facilitate inductive sense-
making across various domains. For example, Hope et al. [29] seg-
ments product descriptions into fine-grained functional aspects
to support analogical reasoning. In the space of text-centric [57]
sensemaking tools for text and code document corpora, these sys-
tems include WordSeer [50, 51, 59], OverCode [20], Foobaz [19],
Examplore [22], SOLVENT [6], Paralib [69], Positional Diction
Clustering (PDC) [18], and CorpusStudio [9]. Some of these sys-
tems exploit shared structure by creating templates, skeletons, or
schemas to reveal variation across corresponding parts.



UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Gu et al.

Like many of these prior systems, AbstractExplorer is a text-
centric system that exploits shared structure to support lateral read-
ing across short document corpora at scale. Unlike prior systems,
it leverages common structures in purpose, not lexical or gram-
matical features, at both the sentence and phrasal level in natural
language documents. AbstractExplorer specifically leverages the
shared structure in scientific abstracts to facilitate abstract corpus
skimming and comparative reading at scale.

This is feasible for scientific abstracts because, as prior work has
identified, there are common structures in academic writing [40, 41,
52], particularly in abstracts [12, 30]. Datasets of paper abstracts
have been annotated with research aspects by experts [35] and
crowds of non-experts [30]. For instance, a large-scale study on
medical journal abstracts [12] found that the predominant structure
is Background, Methods, Results, and Conclusions; similarly, for a
different abstract corpus, Chan et al. [6] used Background, Purpose,
Mechanism, and Findings when building Solvent to support users
finding analogies between research papers.

2.4 Theories Operationalized for Supporting

Inductive Sensemaking

Most sensemaking systems for corpora are built for serial explo-
ration and reading of document corpora, e.g., by improving infor-
mation scent as in Paper Forager [46]’s scaled down paper images
or the mixed-initiaive Serendyze [33]’s recommendations of what
to read next, not close reading and comparison at scale.

But many of the systems in Section 2.3 explicitly reference, as
design inspiration or justification, two theories of human cogni-
tion, i.e., Variation Theory [45] and/or Structural Mapping Theory
(SMT) [17].3 SMT provides a framework for understanding how hu-
mans compare two or more objects by finding common structural
alignments between objects. SMT posits that visual alignment helps
people perceive relational similarities and differences more clearly,
thereby improving their ability to make meaningful comparisons
and understand underlying patterns [28, 38, 47]. The prior SMT-
informed tools in Section 2.3 for both code and natural language
corpora suggest that the cognitive process of comparing texts may
be no exception to the cognitive processes SMT predicts.

3 Formative Interview Study

In order to determine (1) the context in which we might offer novel
views of scientific abstracts and (2) the intelligibility of various
novel prototype designs for reifying cross-abstract relationships,
we conducted a formative interview studywith 12 active researchers
(see Appendix A for participant information). The interview ses-
sions were divided into two parts: an open-ended semi-structured
interview about their backgrounds and practices, followed by feed-
back on a range of mock-ups, including novel reified relationships
between analogous sentences in different abstracts (Figure 2). Ses-
sions, which were held on Zoom, lasted 55 minutes on average.
Participants were compensated with $15 USD.

3SMT is sometimes referred to by alternative names, such as Analogical Learning
Theory.

(a)

(b)

(c)

Figure 2: Examples of mock-ups of cross-document relation-

ship visualizations created for formative study participants,

which remix ideas inspired by GP-TSM [24], Examplore [22]

and ParaLib [69].

3.1 Procedure

In the first part of the session, we asked participants about their
strategies for selecting publication venues for their manuscript
submissions, how they identify and synthesize information from
venues, their approaches to writing manuscripts, and finally, the
technology they have used to help with these processes, current
technology shortcomings, and ideas for addressing these challenges.

In the second part of the session, we provided participants with
mock-ups of possible reifications of cross-document relationships
that might help them synthesize information across abstracts. These
mock-ups were inspired by prior work. For example, Figure 2(a)
shows analogous adjacent sentences rendered with the grayscale
skimming support of GP-TSM [24] and the alignment of analogous
alternatives inspired by Examplore [22], a code corpora sense-
making tool. Figure 2(b) shows the alignment of a single set of
analogous alternatives across the sentences, and Figure 2(c) shows
role-reifying color-coordinated highlights inspired by ParaLib [69],
another code corpora sensemaking tool. We also presented partici-
pants with mock-ups of potential approaches to identifying relevant
information types, including custom search or LLM-powered text
annotation. See Appendix C for the complete set of mock-ups.

We used these mock-ups as design probes [31] to inspire ideation
and elicit creative responses. Specifically, we asked participants to
compare and contrast alternative mock-ups and reflect on how they
could be used or improved to support their known or emerging
synthesis and information-foraging goals. After the interviews, we
analyzed the data using the process described in Appendix B

3.2 Key Findings

3.2.1 Existing Challenges to Sensemaking. Participants’ approaches
to reading and gathering information from papers varied signifi-
cantly, and despite leveraging some tools, these tools were often
less helpful than hoped for. Participants frequently mentioned diffi-
culties with search, e.g., needing to try searching “at least 10 times
with different keywords to find the initial set of relevant papers” (P8).
Some participants also mentioned using generative AI tools to “help
[them] figure out ... the key points of a specific piece” (P12) but may
find it unhelpful if “they often miss some of the key information” (P8).
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In contrast, many participants described their paper comparison
process to be manual, with minimal tool usage.

3.2.2 Feedback on Mock-ups. Participants commented that align-
ment and/or highlightingwere useful for identifying and comparing
information:“this... helps to recognize the differences or similarities”
(P7). However, some thought that this would require some amount
of trust in the algorithm performing the highlighting, especially
if judgments of importance were being delegated to the system
designer or an AI: “I don’t know if I would agree with whoever’s
classification of what’s important” (P2). Visually, participants com-
mented that color highlights made it easier for them to read “im-
portant” parts of the sentences. However, they were divided on
alignment formatting: while some participants disliked seeing extra
spacing necessary to create vertical alignments because it “[causes]
a little bit of annoyance... why is the gap there?” (P3), others said
that it was helpful if the “user wants to look at [a particular common
component]... instead of looking at the whole sentence” (P4).

Participants particularly liked a presented mock-up that let them
build and review custom search queries by highlighting desired por-
tions of text in one or more papers as example-based specifications
for retrieving analogous text from other papers, describing it as “a
smarter Ctrl-F” (P2) or a way to augment keyword-based search
with richer semantic context. One participant described that this
“would be useful just because it gets at what the researcher thinks they
want to know ... and it highlights that information for them” (P12).
However, some raised concerns about implementing this “query
from a text highlight” affordance using an LLM: “if I cannot ver-
ify [it] myself, there’s no way for me to know what I have missed”
(P5). Similar to the discussion about cross-document relationships,
participants generally appreciated color highlights.

4 AbstractExplorer

Given the challenges and opportunities of supporting skimming
and comparing papers at scale revealed in the formative study,
AbstractExplorer is designed to help researchers (1) skim, read,
and better familiarize themselveswith the contents and composition
style of a large corpus of abstracts and (2) reason about cross-paper
relationships at scale without abstracting away the author-written
sentences about their own work. To do this, AbstractExplorer is
designed to support close-reading purpose-defined slices through a
large collection—1,057 in our studies—of paper abstracts.

4.1 System Components

4.1.1 Slicing abstracts for sentence-level aspect reading and compar-
ison (same-role sentences). To keep details at the forefront of the
interface, we designed a mechanism to slice abstracts for viewing
them from specific angles, allowing for comparative close reading
at scale at the sentence level. We chose the sentence as our unit
for cross-document alignment because: (1) it preserves complete
propositional content (unlike phrases or words), (2) maintains gram-
matical coherence when isolated (unlike arbitrary text spans), and
(3) serves as the minimal self-contained unit where aspects can be
meaningfully compared. “Aspects” are either pre-defined or user-
defined on the fly; they are collections of sentences across abstracts
that serve the same or similar purposes within their abstract.

Pre-defined aspects. AbstractExplorer classifies sentences into
five pre-defined aspects common in CHI abstracts: Problem Domain,
Gaps in Prior Work,Methodology/Contribution, Results/Findings, and
Discussion/Conclusion. These were developed to suit the context of
CHI based on the authors’ manual annotation of∼100 CHI abstracts.

Viewing one aspect at a time enables users to closely read and
compare just the analogous sentences of abstracts, which may be
cognitively easier than the comparative close reading of many
abstracts in their entirety, especially if cross-sentence relationships
are pre-computed and reified in the interface. Clicking an aspect
in the list (Figure 1A) displays corresponding sentences from all
abstracts in the “Cross-Sentence Relationship” panel (Figure 1B).
Each sentence is displayed with a matching origin paper ID for
provenance and paper author information for context.

User-defined (custom) aspects. Motivated by formative study feed-
back on alternative search and document grouping, AbstractEx-
plorer allows users to define custom aspects in addition to the five
pre-defined ones. To create a custom aspect, users provide a name,
description, and an optional exact-match filter (like Figure 1D)
to limit results to relevant abstracts. The interface then displays
matching sentences in the “Cross-Sentence Relationship” panel
(Figure 1B), highlighting only the chunk most relevant to the aspect
definition, as determined by the system backend (e.g., Figure 4). See
Section 4.3 for this and other implementation details.

4.1.2 Grammar-preserving sentence segmentation and role highlight-
ing. Inspired by GP-TSM [24], AbstractExplorer first segments
sentences into grammar-preserving chunks—segments that respect
grammatical boundaries, i.e., an LLM judges that the sentence can
be truncated at that chunk boundary without breaking the gram-
matical integrity of the preceding text. Each chunk is then classified
by an LLM as having one of nine pre-defined roles, each of which
has its own assigned color.

To define these roles, we used a human-LLM collaboration ap-
proach. An LLM produced initial annotations, which we iteratively
refined via comparison with the authors’ manual annotations on
our sample of ∼100 CHI 2024 abstracts. Formative study feedback
supported the use of role-related color highlights, so we planned
to visually indicate the role of each chunk with a unique color. We
balanced role specificity with the possible visual indistinguishabil-
ity of too many roles if each is assigned a unique color, ultimately
defining nine roles: Context/Status Quo , Challenge/Problem ,
Contribution , Goal/Focus , Methodology , Participants ,
System Characteristics , Finding , and Enumeration for the
CHI 2024 corpus. An LLM was used to classify sentence chunks
into each of these roles. We adopt the color palette of Tableau 10,
which was carefully designed to be clearly distinguishable.4

Each role label has a corresponding unique color shown at the
top of the “Cross-Sentence Relationship” panel (Figure 1B and Fig-
ure 3B). By default, all highlights are turned on. Users can toggle
individual role highlights by clicking on the corresponding role
label or toggle all highlights via the “Highlight All” button. These
role-based color highlights enable quick identification of analogous
chunks and visual pattern matching over sequences of chunks across
sentences.

4https://www.tableau.com/blog/colors-upgrade-tableau-10-56782

https://www.tableau.com/blog/colors-upgrade-tableau-10-56782
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Figure 3: The global view of the AbstractExplorer interface. (A), (C), (D), and (E) are the same as Figure 1. (B) currently shows

the distribution over common sentence structures in the selected aspect of the corpus, along with an example for each structure.

Users can click the “Expand” toggle button to see the individual sentences represented by each histogram bar.

Figure 4: A user-defined aspect showing results of “user

study sample sizes” (user-provided description) in “VR” (user-

provided filter) papers. The most relevant chunks that con-

tain information related to “user study sample sizes” in each

sentence are automatically highlighted and used to vertically

align their containing sentences.

4.1.3 Organizing sentences into structure groups. We consider com-
mon sequences of chunk roles to be alignable structures that could
be used to support users in identifying structural similarities and
differences across sentences in different abstracts, in line with
Structure-Mapping Theory [17]. In SMT terminology, rendering
and arranging according to corresponding chunks reify “common-
alities in structure,” while variation within corresponding chunks
are “alignable differences” that users are predicted to notice.

In AbstractExplorer, sentences are grouped by this definition
of sentence structure. For example, Figure 5 displays sentences
that all start with a description of the paper’s Contribution , fol-
lowed by System Characteristics . Likewise, Figure 28 in Ap-
pendix F shows all the sentences that contain a description of a study
Methodology , followed by information about the Participants
who are involved in the study. To navigate to a group of sentences
within the same aspect that share a different structure, users can
either use the left and right buttons at the top of the Cross-Sentence

Relationships pane to step to the next most or next least common
structure, or through the “global view” described next.

Structure Global View. In this view (Figure 3B), the sentences
with the most common sentence structure are listed together first,
followed by the sentences with the next most common structure,
and so on. The total number of sentences with each structure in
the (possibly filtered) corpus is shown in parentheses and visual-
ized as a histogram. An example sentence is also shown alongside
each structure. This allows users to first understand the different
structure patterns and their commonality, before diving into close
reading at scale of the sentences that share a particular structure
by clicking any of the “Expand” toggles.

4.1.4 Ordering and Alignment of Sentences within Structure Groups.
Structural mappings between objects are part of the cognitive pro-
cess of comparison according to the Structure-Mapping Theory [17],
and juxtaposition can facilitate humans in recognizing particular
possible structural mappings between objects [75]. We design and
implement two types of juxtapositions:

Within-structure ordering. The structure groups are defined by
tuples of chunk roles, e.g., (Contribution, Participants), but
within the group theymay have longer common sequences of chunk
roles. AbstractExplorer orders sentences within each structure
group based on the sequential pattern of chunk roles (vertical juxta-
positions). Sentences are recursively grouped by sequences of three
chunk roles, with groups ordered by decreasing size. Within each of
those groups, sentences are arranged by increasing length. This or-
dering prioritizes dominant structural patterns (largest groups first)
while exposing fine-grained variations (via length-sorted triplets),
mirroring how humans compare sentences, if SMT is an accurate
description in this domain of comparative close reading.

Within-structure alignment. AbstractExplorer also aligns the
sentences in three different ways, as illustrated in Figure 5: vertical
alignment by the middle of the structure tuple (second element),
vertical alignment by the left of the structure tuple (first element),
and left-justified alignment (horizontal juxtapositions). By default,
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(a) (b) (c)

Figure 5: Sentences that share the Contribution + System Characteristics role structure as viewed in the Cross-Sentence

Relationship pane: (a) Vertically aligned by the boundary between the chunks with the two respective roles. (b) Aligned by the

chunk with the first role. (c) Aligned by the beginning of the sentence.

sentences are vertically aligned by the middle of their shared struc-
ture tuple, but users can freely switch between the three alignment
options using the button group atop the Cross-Sentence Relation-
ship pane (Figure 1B).5 For instance, when examining sentences
with the Contribution + System Characteristics structure,
users may choose to align by middle of the structure, starting with
System Characteristics , to easily focus on the systems being
built as they form a contiguous visual block (Figure 5a). Within the
same aspect, when switching to examine sentences with another
structure, e.g., the Methodology + Participants structure, they
may choose to align by the left of the shared structure, starting with
Methodology , to focus on the methodology being used (Figure 28
in Appendix F). These alignment options are intended to enable
users to more easily read analogous chunks across sentences from
different abstracts, ignoring details serving other roles within the
sentence. This may effectively decrease context switching and lead
to more robust mental models without requiring more cognitive
load. If users prefer, sentences can be toggled to a left-justified
view to facilitate conventional reading and skimming. Together, the
vertical and horizontal juxtapositions are designed to help users
identify both high-level commonalities and nuanced variations
across structurally similar sentences.

4.1.5 Additional Features for Context and Familiarity.

Abstract and TLDR panel. Sentence-level reading may be new to
readers. To allow users to contextualize individual sentences within
their respective abstracts, we link the Cross-Sentence Relationship
and Abstract panels (Figure 1B and C): when users click on any
sentence in the Cross-Sentence Relationships pane (Figure 1B), the
corresponding full abstract is automatically highlighted and scrolled
into view in the Abstracts panel (Figure 1C), offering additional
context when needed. It also includes paper metadata such as the
full author list and the session name. The Abstracts panel can be
customized by users to display the full abstract text, an abstract
“TLDR” (a shorter abstractive summary generated by an LLM), or
both at the same time.

5Only the left-justified alignment option appears as a radio button, the other two
options are embedded into the corresponding structure labels.

Keyword filtering (search). Filtering (Figure 1D) enables users to
narrow their focus to a subset of the corpus while still benefiting
from features that help them recognize cross-sentence relationships
within the remaining abstracts. Users can enter a search term into
the search bar and only papers that include that exact term will
appear in the Cross-Sentence Relationships pane (Figure 1B). Users
can remove the filter by deleting text from the search bar.

Sentence bookmarking. Sentence bookmarking helps users keep
track of papers to revisit later. When users click on a bookmark
icon to the left of any specific sentence in the Cross-Sentences
Relationships Pane (Figure 1B), that sentence is added to a bookmark
list that can be viewed in the Bookmarked Sentences alternate pane.
From this pane, users can toggle and view highlighted sentence
chunks, click to scroll to the relevant abstract for each sentence, or
remove bookmarks from the list.

4.2 User Scenario

Alice wants to learn more about the papers published in CHI 2024
and decides to use AbstractExplorer to explore them. Upon open-
ing AbstractExplorer, Alice sees the Methodology/Contribution
aspect selected by default and a list of Contribution +
System Characteristics sentences—the most common sentence
pattern of that aspect. After scanning a few sentences, Alice real-
izes that Contribution mostly consists of system names, while
the variation lies in System Characteristics . She shifts her fo-
cus to System Characteristics , quickly skimming the vertically
aligned list to discover a wide variety of systems. Intrigued by a
system involving 3D-printable ceramic materials, Alice clicks on
the sentence to view more details about the paper in the Abstract
panel, gaining insight into a previously unfamiliar area.

Alice then navigates to a different group of sentences about
evaluation methodologies. She becomes curious about the num-
ber of participants typically involved in CHI studies. She selects
the Contribution + Participants group to explore the distribu-
tion of participants across studies. The green spans representing
Participants make it easy for her to locate mentions of partici-
pant information in different abstracts. Alice notices a wide range
in participant numbers, with some studies involving as many as
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Abstract 1
Existing guidelines for domain A has focused on B, particularly 
the application of C.  However, little is known about D, which is 
also important. We explored D by conducting semi-structured 
interviews with people from population E.  Results indicated 
that people benefit from D, but often encounter F, which limits 
the value of D. This paper concludes with actionable insights 
for researchers to better understand the role of D.
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Abstract n
Population A have been using tool B for task C in scenario D.  
While B is effective for scenario D, it fails to generalize to other 
scenarios, such as E.  To address this gap, we propose F, a 
novel system that leverages G to help with task C. Through a 
study with N participants, we show that F results in better task 
performance in context E.  We discuss design implications for 
future systems that aim to help with C.
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Figure 6: Workflow for automatic sentence- and chunk-level labeling in AbstractExplorer. Two hypothetical abstracts

are used to illustrate the workflow. (A) We collect paper abstracts and segment each into individual sentences. (B) An LLM

classifies every sentence into one of five pre-defined aspects. Together, (A) and (B) constitute Stage 1: Sentence Segmentation &

Categorization. (C) Each sentence is segmented into grammar-preserving chunks (Stage 2: Sub-sentence Segmentation). Every

chunk is then assigned to one of nine pre-defined functional roles and color-highlighted accordingly (Stage 3: Chunk Role

Annotation).

1,500 participants. However, by looking at Methodology spans that
identify study types, she observes that these large numbers are pri-
marily from survey-based research. She then refines her working set
of abstracts by typing “qualitative” into the search bar, filtering the
underlying abstracts accordingly, and notes that most qualitative
studies involve around 12 participants.

In addition to participant numbers, Alice also explores study
populations by creating a custom aspect, which she describes as
“description of qualitative study population,” with a filter for “health”
papers. The interface returns a dozen highly relevant papers, with
key descriptors of study populations—such as queer women, visu-
ally impaired developers, and older adults involved in care provision—
automatically highlighted for quick identification.

Finally, Alice explores research involving large language models
(LLMs). She types “LLM” into the search bar and selects “Gaps
in Prior Work” from the predefined aspects panel. The largest
structure group is Challenge/Problem + Contribution , and Al-
ice skims these sentences with a focus on Challenge/Problem ,
quickly identifying recurring themes such as addressing halluci-
nation risks, improving prompting, and examining the impact of
LLMs on marginalized groups. This exploration gives her a clearer
view of the key challenges and research directions related to LLMs
discussed at CHI 2024.

4.3 Implementation Details

The AbstractExplorer interface is a React app loaded with CHI
2024 abstract data from the CHI 2024 Papers Explorer’s open-source
repository.6 The dataset consists of paper abstracts and metadata
including title, author names, and session.We select only full papers
from the dataset, which results in 1057 paper abstracts.

6https://observablehq.com/@john-guerra/chi2024-papers

We process this data in a three-stage pipeline (Figure 6). In the
first stage, Sentence Segmentation and Categorization, abstracts
are split into individual sentences using the NLTK package, and
each sentence is classified into one of the five pre-defined aspects as
listed in Section 4.1.1. Classification is performed by prompting an
LLM (see prompt used in Appendix D.1) with the sentence and its
full abstract. Note that an abstract may contain multiple sentences
along the same aspect.

Then, we segment sentences within each aspect into grammar-
preserving chunks (see prompt used in Appendix D.2). This results
in grammatically coherent chunks that are the basis of structure
patterns. After identifying chunk boundaries, we again prompt an
LLM to generate labels for chunks in a human-in-the-loop approach:
starting from an initial set of labels for chunk roles, when a new
label is generated, a researcher from the research team examines
the new label and merges it with existing labels if appropriate,
controlling for the total number of labels.

After obtaining an expanded set of high-level chunk labels, we
assign them to each of the sentence chunks by using LLMs in amulti-
class classification few-shot learning task, with the initial labels
and assignment as examples (see prompt used in Appendix D.3).

All the chunks and corresponding labels are pre-computed and
stored as JSON files, ensuring responsiveness and low latency of the
web application. All keyword searches are computed dynamically
in the React app and have low latency.

Custom aspects are generated dynamically via API calls to a
FastAPI back-end, which prompts an LLM to check whether each
sentence in the filtered subset matches the aspect description—
either in terms of overall content or a matching token—and extracts
the most relevant chunk of that sentence to highlight (see prompts
used in Appendix D.4). The front-end React app allows users to view
partially loaded custom aspects while they are being generated.

https://observablehq.com/@john-guerra/chi2024-papers
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Figure 7: Conditions evaluated in the ablation study. Bolded feature names are enabled; regular-weight feature names are

disabled. All participants saw sentences in conditions (A) and (C) and one condition among (B).

Preferred Least Cognitive Effort

Interface Count Median Mean STD Count Median Mean STD

Baseline (A) 6 5.75 5.72 0.46 11 5.67 5.73 0.42
Without Highlighting (B1) 1 5.17 5.17 — 1 5.50 5.50 —
Without Alignment (B2) 5 5.33 5.37 0.22 0 — — —
Without Ordering (B3) 1 4.67 4.67 — 1 4.50 4.50 —
All-three-features (C) 11 5.50 5.18 1.10 11 5.33 5.00 0.97

Table 1: For each condition, we counted the number of participants who preferred it most, and then show the distribution of

participants’ NFC scores for that group. We do the same for reported lowest cognitive load.

5 Ablation Study

In this study, we allowed participants to experience views of same-
aspect sentences (Section 4.1.1) with different combinations of high-
lighting, ordering, and alignment (as described in Section 4.1.2 and
Section 4.1.4) enabled or not, in order to understand which and/or
what combinations most effectively supported users’ ability to skim
and read laterally across documents.

Since reading is cognitively effortful, we consider how a reader’s
Need for Cognition (NFC) [4, 5]—defined as a personality trait that
reflects one’s tendency to rely on quick heuristics or engage in
effortful cognition—affects their appreciation for the novel lateral
reading/skimming that these features are intended to support.7

The specific research questions for this study were:

(1) How do highlighting, alignment, and ordering affect reading
patterns, user experience, and cognitive load?

(2) How do participants’ valuation of these features relate to
their Need for Cognition?

(3) Does each feature provide value on its own, or only in con-
junction with one or more of the other two features?

5.1 Participants

We recruited 24 participants (15 female, 7 male, and 2 non-binary;
all undergraduate students) from Harvard University via mailing
lists. Participants were fluent in English and over 18 years of age.
Each study took 20–30 minutes and participants received $20 USD
via digital payment as compensation.

7NFC has been taken into account in past HCI studies when examining objective
performance and subjective experience in non-trivial cognitive tasks, e.g., [2, 74].

5.2 Procedure

5.2.1 Setup. We collected 80 sentences from our abstracts dataset
labeled by our system as “Methodology/Contribution.” Participants
viewed the same 80 sentences in each condition—often with a differ-
ent subset of sentences initially visible due to ordering changes—but
only had two minutes to look at them in each condition.

To contrast participants’ gaze patterns in each condition, we
used a Tobii Pro Spark eye-tracker placed below the desktop mon-
itor used by all subjects; Tobii Pro Lab software recorded each
participant’s gaze over time in each condition.

To avoid participant fatigue from viewing all combinations of
feature settings, we used a mixed within- and between-subjects
design. All participants experienced the baseline, i.e., all features
turned off (Figure 7A), the condition with all three features en-
abled (Figure 7C), and one of the three feature-ablation conditions
illustrated in Figure 7B. The study used a balanced design: each
of the three ablation conditions—where one of the three features
was disabled—was assigned to an equal number of participants.
Additional details can be found in Appendix E.

5.2.2 Participant experience. All sessions were conducted in per-
son. At the start, participants received a brief introduction, an
informed consent form, and an opportunity to ask questions. Af-
ter signing the consent form, they filled out a questionnaire to
determine their Need for Cognition (NFC) levels via the NCS-6 sur-
vey [42]. As a final onboarding step, the eye tracker was calibrated
to better track their eyes using its standard software.

In each condition, the participants’ task was to “skim” the 80 sen-
tences for two minutes and then verbally answer the questionWhat
do you think this collection of text is about? After each condition,
they filled out the NASA-TLX questionnaire [27].
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The study concluded with a 15-minute semi-structured interview.
During the interview, participants saw screenshots from the three
conditions and were asked which they preferred and disliked, why,
what theywished the interface had, what influenced their skimming,
and how they normally skimmed texts.

5.3 Results

5.3.1 The three features lose their effectiveness when not used to-
gether. The most popular condition had all three features enabled,
i.e., 11 out of 24 participants (≈50%) preferred Figure 7C, as shown
in the “Preferred” columns of Table 1. The remaining participants
were roughly evenly split between the no-features baseline (6 par-
ticipants) and the without-alignment ablation condition (5 partic-
ipants). One participant each liked the without-highlighting and
without-ordering ablation conditions most, respectively.

The most preferred condition (all three features enabled) was
tied with the baseline no-features-enabled condition for lowest
reported cognitive load. Specifically, 11 participants reported their
lowest raw NASA-TLX scores8 in the all-three-features condition,
and a different 11 participants reported their lowest raw NASA-TLX
scores in the baseline condition. (See Table 1’s “Least Cognitive
Effort” columns for statistical details.) Only one participant each
reported their lowest raw NASA-TLX score when working with
the without-highlighting and without-ordering ablation conditions,
respectively. No participant reported their lowest Raw NASA-TLX
score when using the without-alignment condition. These results
suggest that these three features lose their effectiveness when not
used together.

Q) 
> 

u 
LL. 
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Higher 

0 2 4 6 8 10 12 

Number of Participants 

- Baseline (A) - w/o Ordering (83)

- w/o Highlighting (Bl) - All-Three-Features (C)

- w/o Justification (82)

Figure 8: Stacked bar chart of conditions in which lower and

higher NFC participants reported the least cognitive load,

respectively.

5.3.2 Participants’ Need for Cognition (NFC) explained some of
participants’ perceived cognitive load and preferences. For simplic-
ity of analysis, we denote participants with NFC scores above the
overall participants’ median NFC of 5.42 (IQR = 0.583) as higher
NFC, and lower NFC otherwise.9 Figures in Appendix G show the
distribution of participants’ NFC scores as a function of the con-
ditions in which they reported the least cognitive load (Figure 29)
and which they preferred most (Figure 30). Participants with lower
NFC more frequently preferred and experienced less cognitive load
8The raw NASA-TLX score is the sum of all 6 NASA-TLX questions after reversing the
appropriate questions.
9To compute a participant’s NFC score, we averaged their response to the six questions,
each ranging from 1 to 7, after reversing the appropriate questions.

when skimming with all the features enabled.10 Likewise, Figure 8
shows that most lower-NFC participants reported their lowest cog-
nitive load when all features were enabled, while most higher-NFC
participants reported their lowest cognitive load when no features
were enabled (baseline).

5.3.3 Eye Tracking. Lower NFC participants were generally guided
by emergent visual patterns created by the interactions between
features, especially blocks of color spanning multiple sentences
created when all three features are turned on. Figure 9 shows a typ-
ical lower-NFC participant reading down, across documents rather
than left to right within a single document’s sentence when all
three features are working together; this is a radically different
reading pattern. These participants also often verbally described in
their interviews how they appreciated the colors guiding them in
where and how to skim. Meanwhile, higher NFC participants often
skimmed from left to right, line by line, regardless of what features
were available to them (e.g., P16, whose gaze plots are shown in
Figure 31 in Appendix G).

5.3.4 Lower NFC participants’ skimming experiences. Both gaze
data and the semi-structured interviews revealed that lower NFC
participants were more willing to be guided by the three features
and took advantage of them consciously. Specifically, many lower
NFC participants used color to help them decide what to read, even
without remembering what the colors meant: “I think the colors
definitely guide attention, even though I didn’t know what the colors
meant” (P4) and “I just read in groups. So, I did all the blue, all the
orange, ... ” (P12). P13 used the features to help them decide what
was important for them to read: “When you’re skimming something,
you’re trying to see what’s the most important but given this legend,
this coloring, this organization, you have a rough idea of what’s the
most important and that makes skimming much ... easier.”

As revealed in the semi-structured interviews, lower NFC par-
ticipants seemed to enjoy and prefer how these features guided
their attention, and found it cognitively less demanding to have
all the features enabled, perhaps due to the guidance they believed
it provided them while skimming. Many participants specifically
pointed out how alignment helped them to filter out parts they
thought were not important to skim: “[vertical alignment] made it
very easy to see which part is where ... I should focus on more” (P13).
P13 continued: “It’s so much easier to skim something when you’re
being guided.” When working with the baseline interface with no
features enabled, many lower NFC users found themselves unsure
about how to navigate through the text while skimming: “everything
blurred the same... I just felt kind of bored reading it” (P24).

5.3.5 Higher NFC participants’ skimming experiences. In contrast,
higher NFC participants reported an easier and more pleasant expe-
rience reading in the baseline condition. Many said they appreciated
that they could read as they normally would: “[ The baseline] was
easiest to read just because maybe I’m used to this in general; this is
how I usually read things” (P16). P10 describes how they did not
have to constantly “restructure” their eyes.

10Using a two-tailed Mann-Whitney U Test, we found that participants who reported
their lowest perceived cognitive load when all three features were enabled had signif-
icantly lower NFC than participants who reported their lowest cognitive load level
when skimming with no features enabled—in the baseline interface (p=0.03).
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(a) Ablation condition: without-highlighting (b) All-three-features condition

Figure 9: These two gaze plots show how the reading/skimming behavior of a lower NFC participant (P4) changed when role

highlighting was added to the role ordering and alignment features: from more horizontal (within a sentence) to more vertical

(across corresponding chunks of sentences across different abstracts).

When skimming in the all-three-features condition, many higher
NFC participants felt compelled to discern patterns in the design
and layout of the interface. If/when they could not find any pat-
terns, they became increasingly frustrated. For example, P22 was
distracted by thinking about “the purpose of this design of the text”
rather than focusing “attention on the task at hand.” P10 tried to
connect the different topics covered in a block of color before realiz-
ing “there’s no connection between these two besides the overarching
method.” Likely as a result, some higher NFC participants thought
that the features “made the text more dense” (P16).

In general, higher NFC participants were annoyed by how the
features guided their attention. For many, even when they were
skimming, they still “read it like a book, like, left to right” (P23).
With the presence of all three features, participants like P16 felt
like “something’s trying to control how I’m reading... so, it feels a bit
unnatural or confusing?” Indeed, as shown in Figure 31 in Appen-
dix G, in both non-baseline conditions, P16 still read from left to
right. Visual elements rendered on the text likely impeded their
typical, preferred reading strategy.

6 Summative User Study

After the ablation study validated the effectiveness of all three
SMT-inspired features together (especially for lower NFC users),
we completed the implementation of AbstractExplorer and eval-
uated its impact on researchers’ reading and sensemaking of a
corpus of all ∼1000 paper abstracts from ACM CHI 2024. We did
not conduct a comparative study because existing tools like the
ACM Digital Library typically do not provide structured support
for comparative close reading at scale, making direct comparison
methodologically inappropriate and potentially misleading.

6.1 Participants

We recruited 16 participants (9 male, 7 female) from various uni-
versities across the USA through mailing lists and social media
posts. Twelve of the 16 participants were between the ages of 25
and 34, while the remaining four were younger (18–24). The ma-
jority (nine) were PhD students, five were Master’s students, one

was an industry researcher, and one was academic research staff.
The group had a roughly balanced mix of individuals with varying
levels of experience in HCI, with eight participants having attended
CHI or a similar HCI conference; three had specifically attended
CHI 2024. Additionally, six participants were actively preparing
manuscripts for submission to CHI 2025 or a similar HCI venue.
Participants were roughly evenly split between lower and higher
familiarity when asked to rate their familiarity with CHI or other
major HCI confererences, i.e., UIST or CSCW, on a 1-7 scale. The
average Need for Cognition (NCS-6) score [42] was 5.55, with a
standard deviation of 0.59, indicating that participants generally
had a moderate to high tendency to engage in and enjoy thinking,
with relatively low variability across the group.

6.2 Study Procedure

All studies were conducted remotely via Zoom and facilitated by
the first author. Each study took approximately 60-75 minutes,
and participants received $25 (USD) via digital payment (Zelle or
Venmo) as compensation.

6.2.1 Consent, Pre-Study Survey, and Tutorial. After providing ver-
bal informed consent, participants completed a pre-study survey
(Appendix J.1). They then accessed AbstractExplorer via a web
link (no installation required) and watched a 3.5-min tutorial video
demonstrating its features on the corpus of CHI 2024 paper abstracts.
Participants were also provided with a reference sheet listing key
terms and their definitions and annotated screenshots that explain
different features. This reference sheet was available to participants
throughout the study session. To help familiarize participants with
AbstractExplorer, the study coordinator instructed them to prac-
tice three core interactions—comparing alignment options, toggling
chunk highlighting, and creating a custom aspect—as warm-up ex-
ercises. This phase ensured that participants were aware of key
features of AbstractExplorer.
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6.2.2 Task 1: General Reading. Following the warm-up exercises,
participants performed a general reading task using AbstractEx-
plorer. They were presented with the following task: imagine writ-
ing a survey on CHI 2024 papers, skim as many abstracts as possible,
develop a mental model of the range of contributions, methodolo-
gies, problem domains, and study results, and identify three emergent
patterns in content or style (exact wording in Appendix I.1) and
instructed to use all interface features except filters, to ensure ex-
posure to a sufficient number of papers. They shared their screens
(recorded by the research team) and were encouraged to think aloud
while optionally taking notes in a provided document. The task had
a 15-minute time limit, and participants received a reminder when
5 minutes remained.

6.2.3 Task 2: Focused Reading. In the second task, participants
performed a focused reading task using AbstractExplorer. The
task description and goals were similar to Task 1, but this time
participants were instructed to target abstracts relevant to their
own research or personal interests (exact wording in Appendix I.2).
This task aimed to evaluate how users personalized the interface for
work-related exploration, where deeper engagement might occur
naturally. Participants used all interface features, especially filters
and user-defined aspects, while screensharing (recorded by the
research team as well) with optional thinking aloud and note taking.
The task also lasted 15 minutes with a 5-minute reminder.

6.2.4 Interview and Post-Study Survey. Immediately after the fo-
cused reading task, we conducted a short interview asking partici-
pants to reflect on their experience with both tasks (Appendix J.2),
followed by a post-study survey (Appendix J.3). Throughout the two
tasks, we also collected detailed interaction logs including counts
of user-defined aspects created, duration of highlighting usage, and
time allocation across the three possible alignment options.

7 Results

In this section, we present findings on how AbstractExplorer
supports comparative close reading at scale by integrating quan-
titative survey responses and log data with qualitative analysis
of transcripts and open-ended responses. The qualitative analysis
process is described in detail in Appendix H.

Figure 10: Distribution of participants’ NASA-TLX responses

after using AbstractExplorer. Responses are on a scale

from 1 (very low) to 7 (very high), color-coded by score.

Overall, participants were positive about AbstractExplorer
and its features, mentioning that they made the task easier or led to
a better experience in one way or another (15 out of 16 participants),
highlighting the benefit for more efficient skimming (9 participants)
and comparison of abstracts (5 participants), which allowed them to
read abstracts at scale (5 participants), although they also pointed
out issues such as misclassified aspects and/or chunks (3 partic-
ipants), readability issues (4 participants), and steeper learning
curves with the user-defined feature (3 participants). According to
NASA-TLX responses (Figure 10), participants perceived the read-
ing task as mentally demanding (M=4.88, STD=1.26)—consistent
with their reported effort levels (M=4.75, STD=1.18)—but they also
reported comparable levels of perceived success in accomplishing
the task (M=4.63, STD=1.26). Participants did not find the task too
hurried or rushed (M=3.50, STD=1.59), and despite the novel pre-
sentation style and feature-rich design of the interface, reported
low levels of negative effect such as insecurity, discouragement,
irritation, stress, and annoyance (M=2.56, STD=1.55).

Figure 11: Distribution of AbstractExplorer’s helpfulness

for various tasks, as rated by participants; each row repre-

sents a task, with responses rated on a Likert scale from 1 (not

useful) to 7 (very useful), color-coded by score. Participants

consistently rated the interface as helpful for key literature

exploration activities.

7.1 SMT-Inspired Chunk Ordering,

Highlighting and Alignment

7.1.1 Skimming similarly structured sentences efficiently. More than
half of the participants noted that AbstractExplorer increased
their reading or skimming efficiency (P1, P4, P6, P9, P10, P11, P14,
P15, P16). As for how it helped, many participants mentioned the
two main features they noticed—highlighting and alignment. For in-
stance, P15 said “The color coding is quite effective for skimming; the
alignment also helps and is flexible enough to accommodate different
situations.” P9 further explained, “It allows me to focus on analogous
sentences across papers. It’s easier to read the same type of sentences
with similar sentence structures.” Similarly, P10 reported faster read-
ing through what they described as vertical reading, which we also
observed in the Ablation Study (Section 5). We observed this strat-
egy among multiple summative study participants, i.e., skimming
similarly colored chunks across sentences. Using this strategy, par-
ticipants focused primarily on one highlighted cross-sentence block
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of same-colored chunks and moved across sentences quickly, read-
ing other chunks only when necessary. P3 and P6 also utilized this
reading strategy and kept highlighting on for just their chosen focal
chunk roles to minimize distractions.

Activity log data, which revealed how participants actually used
the interface, echoed the above findings. According to the log data,
participants spent most of their reading time (66.31%) with vertical
alignment on the second element in structure pairs, followed by
alignment on the first element (29.19%), and left-justified alignment
(5.13%). Highlighting usage showed a similar preference: 91.13% of
time with all chunks highlighted, 8.25% with partial highlighting,
and minimal time (0.63%) without highlights. Notably, since partic-
ipants were required to try all alignment and highlighting options
during warmup exercises, their sustained use of SMT-inspired verti-
cal alignment and chunk highlighting features after experimenting
with alternatives provided strong evidence that they found these
features helpful for their tasks.

As shown in Figure 12, participants’ ratings of the usefulness of
different features provides further evidence of their utility. Vertical
alignment by the second element (M=6.19, STD=0.83) and chunk
highlighting (M=6.06, STD=1.34) were the top two most useful
features rated by participants. Vertical alignment by the first ele-
ment (M=5.63, STD=1.09) received slightly lower but still favorable
usefulness rating. Left-justified alignment received more mixed
ratings (M=4.25, STD=1.84), demonstrating participants’ ability to
differentiate between different alignment options and preference
for SMT-inspired vertical alignment.

Figure 12: Distribution of participants’ responses on the use-

fulness of different features. Each row represents a feature,

with responses rated on a Likert scale from 1 (not useful) to

7 (very useful), color-coded by score.

7.1.2 Reading Sentences at Scale. As reflected in Figure 11, partici-
pants highlighted how the interface scaled up the number of papers
they could review (P2, P4, P9, P11, P16), finding the interface to be
highly helpful for exploring a greater number (M=6.19, STD=0.91)
and broader range (M=5.94, STD=1.18) of paper abstracts along a
given aspect than they typically would. For example, P2 said, “It’s
very helpful in getting familiar with large numbers of articles/topics
in a short time, esp. most papers have the similar structure.” Similarly,
P16 wrote, “The way it groups and renders sentences make it very easy
to skim through many papers in this conference, something hard to do
with traditional interfaces.” P9 also noted reading a greater number

and diversity of abstracts in the same timeframe with Abstract-
Explorer. Participants also rated the interface as very helpful for
discovering otherwise-missed papers (M=5.81, STD=1.22). Many
mentioned serendipitous discoveries of new papers (P4, P8, P11)
and a more comprehensive grasp of the collection (P7, P11, P15). As
P4 remarked, “I ran into many interesting papers that I will probably
miss if using a traditional reader.”

7.1.3 Comparing sentences to find common patterns and outliers.
Participants leveraged chunk highlighting and alignment for cross-
paper comparison as well. For instance, P5 valued how the interface
enabled them to “compare a well-defined aspect across selected papers,
such as methodology and study size.” Beyond identifying differences,
participants rated the interface as very helpful for recognizing
common patterns in CHI abstracts (M=5.81, STD=1.17) (Figure 11)
and discovered interesting patterns in both content and writing
style (P2, P4, P8, P14). For example, P2 noted a recurring sentence
structure “we developed xxx, using xxx, showing xxx” when authors
introduced novel systems, while P4 investigated typical participant
counts for different study types. Two participants (P4, P14) reported
that recognizing these common patterns helped them write their
own abstracts for HCI venues.

7.1.4 Improving readability, context, and classification accuracy. De-
spite broad preference for the AbstractExplorer interface, partic-
ipants identified several opportunities for improvement. Two noted
that the need for horizontal scrolling interfered with skimming.
P10 said that “horizontal scroll makes switching to different lines a
bit hard,” and P6 added that “some sentences are too long, requiring
users to scroll to the end. Implementing a Line Break Mode or provid-
ing sentence breakdowns/summarization could improve readability.”
While some found the interface “visually appealing” (P4), “intuitive,”
and “not too cluttered” (P7), others described it as “overwhelming”
(P8, P16). P8 elaborated, “There are so many colors, sometimes it
distracted me or [made me] lose my attention.”

Lack of contextual information presented another challenge:
while P14 appreciated the ability to access original abstracts by
clicking sentences, P4 and P16 noted difficulties with limited con-
text when parsing abstracts at the sentence level. P4 mentioned
unclear pronoun references (e.g., “This system” or “to achieve that”)
resulting from splitting abstracts into single sentences, and P16
suggested the addition of “a mechanism to see the previous and next
sentences of a given sentence for better context.” Misclassification of
sentences and sentence chunks also emerged as a potential concern,
though it appeared infrequently and had minimal impact on the
user experience. Only three out of sixteen participants reported
such issues. P4 mentioned that “While the labels are usually accu-
rate, sometimes they are mislabeled.” P7 observed that “The aspect
types sometimes did not fully match the results shown for them,” and
P16 called for “higher-quality labels,” but still appreciated that the
system made common patterns “really clear.”

7.2 User-Defined Aspects

Each participant generated at least one user-defined aspect, aver-
aging 2.25 (STD=1.57) per participant, with heavier use during the
second task (focused reading), demonstrating active engagement
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with this feature. Examples generated by participants included “top-
ics in games” (P1), “methods in design” (P2), and “trends in AI for
health” (P11). Though user-defined aspects received comparatively
lower ratings (M=4.81, STD=1.80) than other features, they were
still rated as useful by most participants (Figure 12). In qualitative
responses, many participants described the user-defined aspect fea-
ture as “effective” (P2, P10) and helpful for literature searches (P4,
P16). P12 praised the custom aspect results for their high quality,
remarking, “the system is very smart.” P16 noted, “The user-defined
feature is very cool and has a lot of potential, especially for researchers
in their literature review process, when they want to find related papers
from a niche aspect.” However, some participants reported concerns
about slow result generation (P1, P15) and perceived overlap with
the filter feature (P5, P11).

The feature’s effectiveness seemed to vary by experience level.
HCI-experienced participants appeared to derive more value from
it, while those who were less experienced faced a steep learning
curve—particularly in formulating meaningful domain or aspect
names. P14, who lacked familiarity with HCI venues, explained,
“The user-defined function was a bit confusing, especially since I had
little understanding of what the set of papers was specifically about,
making it difficult for me to come up with helpful keywords that I
can enter into the three boxes.” P8, another novice, confused “as-
pect” with “domain,” entering topic nouns like “children” and “VR”
into the aspect field, which produced less coherent outputs. These
observations underscored the need for an improved UI design for
authoring custom aspects, especially for those who are less familiar
with the research corpus.

7.3 Real-World Usages

When asked about potential real-world usages of the interface,
participants responded positively overall: 13 indicated they would
use it regularly if made available, two would use it situationally, and
only one preferred traditional interfaces. P11 noted, “Probably—it
really helps with reading papers, especially when I want to get an
overview or write a survey about a conference.” Participants also
envisioned specific use cases such as pre-conference applications
and literature review. For instance, P3 stated they would use it “to
write abstracts and find aspects of abstracts that will influence my
decision to attend a particular talk at the conference.” P16 explained,
“I would use it to go through a conference proceeding before attending
it. I can also see myself using the user-defined feature when doing
literature review.” P12 expressed conditional adoption, suggesting,
“Maybe, but I’d be more inclined to use it if there were options to export
selected content or integrate the interface with other tools like Zotero,
Notion, or reference managers.”

8 Discussion

Our ablation and summative studies verified the value of Abstract-
Explorer, specifically showing that all three components of the
Structural Mapping Engine—color coding, sentence ordering, and
vertical alignment—are crucial for facilitating comparative close
reading at scale. Building on our findings, we now reflect on both
the conceptual framework and empirical results of our design.

8.1 Rethinking Sensemaking and Information

Seeking Paradigms

Like prior Structural Mapping Theory (SMT)-informed work in
text corpora representation, AbstractExplorer’s features have
enabled some users to see more of both the overview and the details
at the same time, facilitating abstraction without losing context. In
other words, rather than be overwhelmed by a wall of text, pre-
computing and reifying cross-document analogous relationships
make it psychologically possible for users to engage—if they are
willing to be guided by it. (Lower NFC users are more likely to fall
into this category.) With this augmented perception of the original
text, users can notice both cross-document relationships already
computed for them and beyond.

As a result, our approach can go beyond commonly used in-
formation seeking paradigms, including Overview First Paradigm
(“Overview first, zoom and filter, then details on demand”) [58]
and Search First Paradigm (“Search, Show Context, Expand on
Demand”) [64]. While our work is not a critique of established
paradigms, we align with prior works that demonstrate how alter-
native approaches are beneficial for seeking information from large
corpora of spatial data where the notion of overview and details
are poorly defined [44], global summaries are unimportant as they
remove nuances [62, 64], and details on demand is impractical or
inefficient due to the demand of repetitive interactions [7].

In this work, we introduce a new paradigm for exploring a large
corpus of small documents by identifying roles at the phrasal and
sentence levels, then slice on, reify, group, and/or align the text it-
self on those roles, with sentences left intact. We demonstrate how
slicing sentences according to roles and visually aligning them
can help readers perceive cross-document relationships in a coher-
ent manner. We extend existing approaches through automated
role annotation, establishing alignments using grammatical chunk
boundaries, and preserving sentences in their entirety, instead of
relying on abstract meta-data. In the context of close reading of
research paper abstracts at scale, our findings suggest Abstract-
Explorer enabled participants to scale up the number of papers
they could review through efficient skimming and find common
patterns and outliers through sentence comparison, resulting in a
rich synthesis of ideas and connections to foster deeper engagement
with scholarly articles. We posit that our approach can generalize
to other domains such as journalism [21], code synthesis [20, 22],
and social media analytics [34] where visual alignment of text can
enable meaningful comparisons of underlying patterns to identify
relational clarity.

8.2 Facilitating Structured Variation Seeking to

Invite Cognitive Engagement

Our work introduces novel human cognition-informed affordances
that facilitate and invite users to make use of variation present in a
corpus of abstracts; participants found value in these affordances
and used them to engage with the revealed variation. We will call
them variation affordances. AbstractExplorer used variation af-
fordances present in prior systems, e.g., color-coordinated high-
lighting of analogous text in Gero et al. [18], and introduced new
ones, such as alignment of sentences based on analogous chunks
within them, which had only been hypothesized in prior work [21].
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By definition, sensemaking and other dialectical activities [73]
necessitate engagement. Our work demonstrates that designs in-
formed by Structure-Mapping Theory can support users in nav-
igating, making use of, and engaging with variation present in
information. In this sense, AbstractExplorer enables dialectical
activities that users may otherwise have found to be too tedious
or difficult to engage with. Dialectical activities cannot be done on
a user’s behalf by AI; with variation affordances, AI is supporting
the user’s engagement with the data themselves.

8.3 Limitations and Future Work

We chose to test AbstractExplorer using CHI abstracts as they
are a corpus of diverse short documents with implicit norms for
content and style. However, AbstractExplorer could be general-
ized to abstracts from other CS conferences, journal articles, or even
beyond abstracts to other types of implicitly or explicitly structured
short documents. According to SMT, this generalization depends
on most documents having some shared implicit structure. Support-
ing a new corpus would require defining new corpus-appropriate
predefined aspects and chunk role labels. Other components would
likely be able to remain unchanged.

Reading abstracts along one aspect at a time offers both advan-
tages and limitations. On one hand, it enables users to quickly skim
similar sentences across papers at scale. However, such sentence-
level analysis may oversimplify the more complex arguments that
span across several sentences. Abstracts, while concise, often con-
tain intricate reasoning that may be split across several lines, and
focusing on sentence-level patterns may lead to a loss of context.
While our system includes linkages that allow users to quickly
access the full abstract by clicking on any selected sentence, the re-
sulting context-switching can be cognitively demanding and disrup-
tive. Future work could explore more seamless ways of preserving
context, such as allowing users to navigate through every sentence
of an abstract directly within the Cross-Sentence Relationship pane,
fostering a more cohesive understanding of the content.
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A Formative Interview Study Participants

We recruited 12 active researchers by word of mouth followed by
snowball sampling [53]. Demographically, seven with he/him pro-
nouns, four with she/her pronouns, and one who did not disclose.
Two were 18–24 years old, 7 were 26–35, and 3 were 36–45. Par-
ticipants were in varying stages of their research careers. Three
participants had been active researchers for 1-5 years, six partic-
ipants had been active for 6-10 years, and three participants had
been active researchers for more than 10 years. Their research inter-
ests included human-computer interaction, software engineering,
web security, music, nanophotonics, and computational economics,
among others. All of them except one had published manuscripts in
conferences or journals in their respective research fields, and the
remaining participant was finalizing a manuscript for submission.
While English was the primary language of research for all partic-
ipants, three mentioned being most comfortable with languages
other than English.

B Formative Interview Study Data Collection

and Analysis

Interviews were video and audio recorded. We transcribed the au-
dio using OpenAI’s Whisper automatic speech recognition system
and anonymized the transcript before analysis. We analyzed the
interview data using thematic analysis [1]. First, two members of
the research team independently coded four (25% of collected data)
randomly chosen participant data to generate low-level codes. The
inter-coder reliability between the coders was 0.88 using Krippen-
dorff’s alpha [37]. The two coders then met together to cross-check,
resolve coding conflicts, and consolidate the codes into a codebook
across two sessions. Using the codebook, the two coders analyzed
six randomly selected participant data each. The research team then
met, discussed the analysis outcomes, and finalized themes over
three sessions.

C Formative Interview Study Design Probes

C.1 Cross-document relationship design probes

Figures 13, 14, 15, 16, 17, 18, 19, 20, and 21 are the full collection of
cross-document relationship visualization design probes used in
the formative study.

Figure 13: CDR design probe featuring varying greyscale

emphasis depending on sentence subsection importance

Figure 14: CDR design probe featuring both greyscale em-

phasis and multiple subsection alignment

Figure 15: CDR design probe featuring multiple subsection

alignment

Figure 16: CDR design probe featuring colored text with mul-

tiple subsection alignment

Figure 17: CDR design probe featuring highlighted text with

multiple subsection alignment

Figure 18: CDR design probe featuring highlighted text

Figure 19: CDR design probe featuring two-column align-

ment on a user-selected attribute with highlights for empha-

sis

Figure 20: CDR design probe featuring three-column align-

ment on a user-selected attribute

Figure 21: CDR design probe featuring three-column align-

ment on a user-selected attribute with colored text for em-

phasis

https://doi.org/10.1145/3613904.3641945
https://doi.org/10.1111/cogs.13182
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C.2 Custom aspect creation design probes

(a)

(b)

(c)

Figure 22: Example mock-ups of custom aspect creation tools

and visualizers we created for the formative study inspired by

PaTAT [16]: (a) shows custom aspect creation via entering a

description or manual annotations. (b) shows editing a LLM-

generated description or marking feedback on suggested

results. (c) shows potential visualization controls.

The following custom aspect design probes used in the formative
study were very lightly animated to indicate user interactivity.
Figures 23, 24, 25, 26, and 27 are notable key frames from the probe.

Figure 23: Custom aspect design probe: allowing users to

highlight or edit relevant texts to create or edit a custom

aspect

Figure 24: Custom aspect design probe: using user-written

description to create, edit, or reflect on a custom aspect

Figure 25: Custom aspect design probe: The system could

provide suggestions for the user to accept or reject
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Figure 26: Custom aspect design probe: user could customize

how the aspect is visualized, using italics

Figure 27: Custom aspect design probe: user could customize

how the aspect is visualized, using highlights

D LLM Prompts

Here, we provide the detailed prompts used in our implementation
of AbstractExplorer.

D.1 Sentence Categorization

Table 2 contains the prompt used to categorize each sentence into
one of the pre-defined aspects.

D.2 Chunk Segmentation

Table 3 contains the prompt used to segment sentences into chunks.

D.3 Chunk Annotation

Table 4 contains the prompt used to annotate each chunk with the
relevant facet type.

D.4 Custom Aspects

Table 5 contains the prompt used to generate an internal aspect
description for downstream processing. Table 6 contains the prompt
used to identify relevant sentences based on the initial and internal
aspect description.

Table 2: Prompt used to classify each sentence into one of

the pre-defined aspects.

The following sentence "${sentence}" is from the abstract of a CHI
2024 paper.
The full abstract is "${abstract}".
Please classify the sentence into one of the five categories below.

Categories:
0 Problem Domain (Introduction of the problem area),
1 Gaps in Prior Work,
2 Methodology (Work done by the authors),
3 Results & Findings,
4 Conclusion (Or implications for future work)

Please answer only the category number.

Table 3: Prompt used to identify chunk boundaries (segment-

ing).

Does the following sentence end properly?.
"${sentence}"

Please answer only Yes or No.

Table 4: Prompt used to annotate or classify each sentence

chunk.

A sentence (from aCHI 2024 paper abstract) was splitted into several
segments, put into the following list. For each list element, please
classify it into one of the 9 categories below, based on what it
describes.
"${sentence}"

Categories:
0 Status Quo/Context (the particular context or existing work)
1 Challenge/Problem/Obstacle
2 Contribution (what the authors did)
3 Purpose/Goal/Focus (why the work was done)
4 Methodology (how the work was done)
5 Participants (who were involved)
6 System Description (of a system the authors developed or pro-
posed)
7 Findings (what are the results)
8 Enumeration (a list of things)

Here are some examples for your reference: "${examples}"

Please return a python list of the category numbers only.
The length of that list must be the same as that of the input list.
If the task is impossible, return an empty list.

These prompts were tuned manually. We identified multiple
example aspects by sampling from comments that participantsmade
in the formative interviews regarding possible custom aspects they
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might be interested in, and iterated over system prompts while
manually reviewing the quality of each prompt result for these
example aspects.

Table 5: Prompt used to generate aspect description. Note

that the example lists support a variable number of quotes.

If there were no examples, a different sentence was used.

Here is the user’s query:
"""
${query text}
"""

Here are some examples of sentences or sentence quotes that
MATCHED the query:
- "${sentence quote 1}"
- "${sentence quote 2}"
- "${sentence quote 3}"

Here are some examples of sentences or sentence quotes that DID
NOT MATCH the query or are otherwise NOT IDEAL quotes for
this query:
- "${sentence quote 1}"
- "${sentence quote 2}"
- "${sentence quote 3}"

${if there are no examples at all, remove the two above texts and
instead only include: "The user has not given any example matching
or non-matching quotes yet."}

There are a few ways a paper abstract might match the query.
CONTENT: The query describes some focus, methodology, or some
other holistic attribute of a paper, and the paper matches that filter.
TIDBIT: The query describes some type of information about a
paper that the user is looking for, and the abstract provides that
information.

Answer each of these questions with 1-3 sentences:
A. What type of query is this?
B. What information in a paper abstract would indicate whether
that abstract matches the query?
C. The user wants to get one short quoted phrase from each abstract
that matches the query. What information should be included in
the quote? What information does not need to be in the quote? You
may use any examples from the user when reasoning about this.
Remember that we need quotes to be as concise as possible.

E Ablation Study Setup

Anumber of simplificationsweremade to accommodate eye-tracking
software limitations and reduce confounding factors. To just focus
on reading-based insights and behavior and eliminate the complica-
tions of interaction, e.g., toggling a feature on and off, we removed
everything but the sentences themselves rendered with each condi-
tion’s enabled features, i.e., as a static webpage. The constraints of
our screen-based eye tracking software also dictated some modifica-
tions: Given the eye-tracker’s resolution, sentences were rendered

Table 6: Prompt used to identify relevant abstracts and select

abstract quotes.

Here is the user’s query:
"""
${query text}
"""

There are a few ways a paper abstract might match the query.
CONTENT: The query describes some focus, methodology, or some
other holistic attribute of a paper, and the paper matches that filter.
TIDBIT: The query describes some type of information about a
paper that the user is looking for, and the abstract provides that
information.

Here are some additional notes about what the query is looking for
and how quotes should be selected if an abstract does match:
${A/B/C list text of abstract description responses}

Here is a numbered list of sentences from one paper abstract: (note
that there are divider strings "<>" to mark quotable segments in
the sentences)
1. ${sentence 1 part 1 <> sentence 1 part 2 <> ...}
2. ${sentence 2 part 1 <> sentence 2 part 2 <> ...}
3. ${sentence 3 part 1 <> sentence 3 part 2 <> ...}

Answer these questions:
A. Does this paper abstract match the query?
B. Why does it match or not match?
C. If it matches, which sentence number would provide the best
quote that explains why the query matches the abstract or give
the info the query is looking for? Write this as a single digit. If the
query did not match, write NONE.
D. Write the quote from that sentence (the most relevant substring
of the sentence) in double quotes. A quote must start and end at
dividers. Do not include any divider strings in the quote. Keep the
quote short. If the query did not match. write NONE.

in a font that was large enough on the screen that a finger held
horizontally at arms length approximately covered only one row of
text (one sentence). Since tracking eye gaze across users’ vertical
scrolling was possible while tracking eye gaze during horizontal
user scrolling was not, participants were not allowed to scroll hori-
zontally. As a result, some sentences were truncated by virtue of
extending past the end of the screen. To simplify participants’ poten-
tial visual recognition of the effects of the ordering feature, we only
showed the first two chunks of sentences, which still form grammat-
ically valid sentences by construction, as described in Section 4.1.2.
We recognize this reduces the ecological validity of the experiment,
but believe the results are still informative at the conceptual level.
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F AbstractExplorer System Components

(a)

(b)

(c)

Figure 28: Methodology + Participants sentences as viewed

in the Cross-Sentence Relationship pane. (a) vertically aligns

in the middle of the chunk type tuple. (b) aligns to the left of

the chunk tuple. (c) aligns on the beginning of the sentence.

G Ablation Study Results

Figure 29: Distribution of participants’ NFC scores by condi-

tion that gave the participant the least cognitive load. Note

that B2 did not provide any participant with the lowest cog-

nitive load, and so there is no data to show for it.

Figure 30: Distribution of participants’ NFC scores by pre-

ferred condition
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(a) Ablation Condition: Without Ordering (B3)

(b) All-three-features (C)

Figure 31: Gaze plots showing eye movements of P16, a higher NFC participant, across two interface conditions
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H Summative Study Qualitative Data Analysis

Procedure

We conducted a qualitative analysis of user study transcripts and
survey responses using a Grounded Theory approach [8]. First,
the lead researcher collected a list of participants’ behaviors, ap-
proaches, reflections on their experience, and feedback about the
interface. The researcher then systematically coded this data, re-
visiting the data multiples times and refining the codes to ensure
consistency and coherence. Through this process, high-level themes
were identified and organized using affinity diagramming. Once the
thematic structure was finalized, the researcher gathered support-
ing evidence for each theme and synthesized the findings, which
were reviewed by the research team to ensure agreement on the
results.

I Summative User Study Tasks

I.1 Task 1: General Reading

Imagine you are writing a survey about the papers published at CHI
2024. You’ll need to develop a comprehensive understanding of as
much of the research published at CHI 2024 as possible. Given the
time constraints, you’ve decided to focus solely on paper abstracts.

Goal:
(1) Skim as many paper abstracts as possible
(2) Develop a mental model of the variety of
(a) contributions,
(b) methodologies,
(c) problem domains, and
(d) study results
within the papers at the conference.

(3) Bookmark sentences you find relevant or interesting.
(4) Look for 3 emergent patterns—both in content and style—

over one or more of these aspects in the CHI 2024 paper
abstracts (We understand you may not be able to address
every aspect).

Feel free to use any feature of the interface except the “filter”
feature. Please share your screen, and you may think aloud if it
helps you verbalize your observations at the end. You can optionally
use this doc as a place to take notes.

I.2 Task 2: Focused Reading

This part is similar to Part 1, but this time, focus on a subset of
paper abstracts that are related to your work or of personal
interest.

Goal:
(1) Skim as many paper abstracts as possible. Feel free to engage

more closely with abstracts that capture your attention.
(2) Develop a deeper understanding of the distribution of
(a) contributions,
(b) methodologies,
(c) problem domains, and
(d) study results
within this subset of papers.

(3) Bookmark sentences you find relevant or interesting.
(4) Look for 3 emergent patterns—both in content and style—over

one or more of these aspects in the paper abstracts that you

choose to read (We understand you may not be able to ad-
dress every aspect).

Again, feel free to use any feature of the interface. Please share
your screen, and you may think aloud if it helps you verbalize your
observations at the end. You can optionally use this doc as a place
to take notes.

J Summative User Study Surveys

J.1 Pre-study Survey

J.1.1 Demographics.

(1) What is your Participant ID
(Given to participant by study coordinator)

(2) What is your gender?
– Male
– Female
– Non-binary
– Prefer not to disclose

(3) What is your age?
– Under 18 years old
– 18-24 years old
– 25-34 years old
– 35-44 years old
– 45-54 years old
– 55-64 years old
– 65-74 years old
– 75 years or older
– Prefer not to disclose

(4) On a scale from zero to ten, please select your level of profi-
ciency in reading English.
– 0 - none
– 1 - very low
– 2 - low
– 3 - fair
– 4 - slightly less than adequate for current role
– 5 - adequate for current role
– 6 - slightly more than adequate for current role
– 7 - good
– 8 - very good
– 9 - excellent
– 10 - perfect

(5) What is the highest degree or level of school you have com-
pleted?
– High school graduate
– Bachelor’s degree
– Masters’ degree
– Doctorate degree
– Other...

(6) How would you describe your research position?
– Undergraduate student
– Master student
– PhD student
– Post-doctoral researcher
– Faculty
– Academic research staff
– Industry researcher
– Other. . .
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J.1.2 Familiarity with CHI.

(1) How many CHI (or UIST/CSCW) conferences have you at-
tended?
– 0
– 1
– 2
– 3
– 4
– 5+

(2) Did you attend CHI 2024?
– Yes
– No

(3) Are you actively preparing amanuscript for CHI (or UIST/CSCW)
or a similar venue?
– Yes
– No

(4) Howwould you rate your familiaritywith CHI (or UIST/CSCW)?
– Scale: 1 (Not familiar at all) to 7 (Very familiar)

(5) How would you rate your knowledge about what kind of
writing patterns are present in abstracts in CHI (or UIST/CSCW)?
– Scale: 1 (Not knowledgeable at all) to 7 (Very knowledge-
able)

(6) How would you rate your confidence about being able to
write an abstract for CHI (or UIST/CSCW)?
– Scale: 1 (Not confident at all) to 7 (Very confident)

J.1.3 Need for Cognition (NCS-6). The following questions are on
a 7 point likert scale from “not at all like me” to “very much like
me.”

(1) I would prefer complex to simple problems.
(2) I like to have the responsibility of handling a situation that

requires a lot of thinking.
(3) Thinking is not my idea of fun.
(4) I would rather do something that requires little thought than

something that is sure to challenge my thinking abilities.
(5) I really enjoy a task that involves coming up with new solu-

tions to problems.
(6) I would prefer a task that is intellectual, difficult, and impor-

tant to one that is somewhat important but does not require
much thought.

J.2 Post-Study Interview Questions

(1) How did it go? Can you tell me more about your experience?
(2) Is there anything else you want to share? Any other feedback

on the interface/tasks/ anything?

J.3 Post-study Survey

J.3.1 NASA-TLX.

(1) How mentally demanding was the task?
– Scale: 1 (Low mental demand) to 7 (High mental demand)

(2) How physically demanding was the task?
– Scale: 1 (Low physical demand) to 7 (High physical de-
mand)

(3) How hurried or rushed was the pace of the task?
– Scale: 1 (Not rushed at all) to 7 (Very rushed)

(4) How successful do you think you were in accomplishing the
task?
– Scale: 1 (Failure) to 7 (Perfect)

(5) How hard did you have to work to accomplish your level of
performance?
– Scale: 1 (Not hard at all) to 7 (Very hard)

(6) How insecure, discouraged, irritated, stressed, and annoyed
were you when accomplishing the task?
– Scale: 1 (Not really) to 7 (Highly)

J.3.2 Familiarity with CHI.

(1) After using the interface, how would you rate your familiar-
ity with the conference venue?
– Scale: 1 (Not familiar at all) to 7 (Very familiar)

(2) After using the interface, how would you rate your knowl-
edge about what kind of writing patterns are present in
abstracts in this venue?
– Scale: 1 (Not knowledgeable at all) to 7 (Very knowledge-
able)

(3) After using the interface, how would you rate your confi-
dence about being able to write an abstract for this venue?
– Scale: 1 (Not confident at all) to 7 (Very confident)

J.3.3 Interface Helpfulness.

(1) How helpful was the interface for exploring a greater num-
ber of papers along a given aspect than you typically would?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(2) How helpful was the interface for exploring a broader range
of papers along a given aspect than you typically would?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(3) How helpful was the interface for discovering papers that
you might have missed otherwise?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(4) How helpful was the interface for comparing different pa-
pers along a given aspect?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(5) How helpful was the interface for forming a more clear
understanding of the relationships between different papers
along a given aspect?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(6) How helpful was the interface for familiarizing with the
different problem domains studied at CHI?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(7) How helpful was the interface for familiarizing with the
different kinds of contributions presented at CHI?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(8) How helpful was the interface for familiarizing with the
differentmethodologies used at CHI?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(9) How helpful was the interface for familiarizing with the
distributions over problem domains, methodologies, con-
tributions, etc. at CHI?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

(10) How helpful was the interface for recognizing common
patterns in how research is described at CHI?
– Scale: 1 (Not helpful at all) to 7 (Very helpful)

J.3.4 Feature Usefulness.
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(1) How would you rate the usefulness of the Pre-Defined As-
pects feature (or the ability to see a particular slice of all
paper abstracts)?
– Scale: 1 (Not useful at all) to 7 (Very useful)

(2) How would you rate the usefulness of the coloring of sen-
tence segments based on their roles in the sentence?
– Scale: 1 (Not useful at all) to 7 (Very useful)

(3) How would you rate the usefulness of the order-by-structure
overview?
– Scale: 1 (Not useful at all) to 7 (Very useful)

(4) How would you rate the usefulness of the vertical-alignment
by the first segment in the pattern pair?
– Scale: 1 (Not useful at all) to 7 (Very useful)

(5) How would you rate the usefulness of the vertical-alignment
by the second segment in the pattern pair?
– Scale: 1 (Not useful at all) to 7 (Very useful)

(6) How would you rate the usefulness of the left-justified align-
ment?

– Scale: 1 (Not useful at all) to 7 (Very useful)
(7) How would you rate the usefulness of the User-defined As-

pects feature?
– Scale: 1 (Not useful at all) to 7 (Very useful)

(8) How would you rate the usefulness of the search feature?
– Scale: 1 (Not useful at all) to 7 (Very useful)

(9) Howwould you rate the usefulness of the bookmark feature?
– Scale: 1 (Not useful at all) to 7 (Very useful)

J.3.5 Open-EndedQuestions.

(1) What did you like about this interface?
(2) What did you not like about this interface?
(3) What did you wish you had in this interface?
(4) Would you see yourself using this interface in a real-world

setting? Why or why not?
(5) What would need to change or improve for this interface to

be useful in your daily work/life?
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