
Neural Open Information Extraction with Transformers

Wes Gurnee
Cornell University

Ithaca NY
rwg97@cornell.edu

Ziwei Gu
Cornell University

Ithaca NY
zg48@cornell.edu

Abstract

In this work, we model the Open Infor-
mation Extraction problem as a sequence
to sequence transduction task. We use a
learning based approach to train a trans-
former encoder-decoder architecture to ex-
tract relational triples using a large train-
ing set bootstrapped from a rule based ex-
tractor. We show that our Open IE sys-
tem significantly outperforms several ex-
isting Open IE tools on a large benchmark
dataset and is competitive with the state of
the art, without the dependencies on other
NLP tools.

1 Introduction

Open information extraction is the task of gener-
ating a structured representation of the informa-
tion in text, usually in the form of relational triples
(e.g., (LeBron James, plays for, Los Angeles Lak-
ers)). Unlike traditional relation extraction meth-
ods, Open IE is not limited to a predefined set
of target relations or a taxonomy of entities, but
rather extracts all types of relations found in a text.
As a result, it enables scaling to large heteroge-
neous corpora without extensive human involve-
ment.

Open information extraction is important be-
cause it enables many down stream NLP applica-
tions. The most obvious is in knowledge graph or
knowledge base generation. The triples extracted
from an Open IE system can be stored as a knowl-
edge graph where the relation is a directed edge
that connects the extracted subject to the object.
Many other applications like question answering
and search systems can also benefit from more
structured representations of text.

2 Related Work

Many extraction systems have been proposed
since the first Open IE system TEXTRUNNER

(Banko et al., 2007). Traditional Open IE sys-
tems can be broadly classified into 3 categories
- rule-based, clause-based, and learning-based.
Rule-based systems like REVERB (Fader et al.,
2011) make use of hand-crafted extraction rules
involving part-of-speech tags and regular expres-
sion patterns. Clause-based systems like CLAU-
SEIE (Del Corro and Gemulla, 2013) aim to im-
prove the accuracy by incorporating a sentence re-
structuring stage to locate relations in a set of syn-
tactically simplified clauses. As a result, they can
better cope with complex sentences. Learning-
based systems like OLLIE (Mausam, 2016), on
the other hand, take a self-supervised learning ap-
proach that learns patterns based on dependency
parse paths. However, all of these systems rely
heavily on other NLP tools for pattern matching
and may suffer from error propagation.

Recently, supervised neural network models re-
vitalized the field of Open IE. Cui et al. cast Open
IE as a sequence generation problem and propose
an encoder-decoder framework, which achieved
promising results without any hand-crafted pat-
terns (Cui et al., 2018). Arzoo et al., treat Open
IE as a sequence labeling problem and use an
attention-based recurrent neural network for joint
extraction of entity mentions and relations (Kati-
yar and Cardie, 2017). Stanovsky et al. for-
mulate Open IE as a sequence tagging problem
and develop a bi-LSTM transducer to extend deep
Semantic Role Labeling models to extract Open
IE tuples (Stanovsky et al., 2018). Inspired by
these efforts, we investigate a transformer-based
sequence-to-sequence approach to obtain binary
extractions. To the best of our knowledge, this is
the first time such model architecture is used for

Open IE.

3 Approach

We treat the open information extraction prob-
lem as a sequence to sequence transduction task
inspired by neural machine translation. More
specifically, given an input sentence, the task is
to produce a sequence containing the subject, ob-
ject, and predicate delimited by special tokens in-
dicating the type of a the span. For instance,
given the input “Barack Obama was President of
the Unites States.” our objective is to generate
the sequence “<arg1>Barack Obama </arg1>
<rel>was</rel> <arg2>President of the United
States </arg2>.”

3.1 Data

To train our seq2seq model, we used the training
data made available by (Cui et al., 2018). The
data is gathered from Wikipedia dump 20180101
where each example is a sentence with 40 or
less words. The labels are gathered from a rule
based system OpenIE41 where only extractions
with confidence greater than .9 are retained to en-
sure high quality training data. In total, the train-
ing set contains 36,247,584 (sentence, tuple) pairs.

We also use the same test set as (Cui et al., 2018)
that uses the open information extraction bench-
mark created by (Stanovsky et al., 2018) that lever-
ages the QA-SRL annotation. The test set contains
3,200 sentences and 10,359 extractions2.

3.2 Model

Given the recent success of self-attention networks
in a variety of sequence processing tasks, we apply
the transformer architecture (Vaswani et al., 2017)
to this problem. A transformer is composed of a
encoder and decoder each of which contain sev-
eral blocks. An encoder block contains a multi-
head attention layer that is added with the input
via a residual connection and then normalized.
This sequence of vectors is then passed through a
fully connected feed forward layer that again has
a residual connection to the multi-head attention
output. The decoder block looks the same except
the first multi-head attention layer is masked so
that it can not peek ahead at future inputs, and it
has an addition multi-head attention layer that gets

1https://github.com/knowitall/openie
2https://github.com/gabrielStanovsky/

oie-benchmark

Figure 1: Transformer (Vaswani et al., 2017)

some of its inputs from the corresponding encoder
block. Because these blocks don’t rely on re-
current connections, the transformer can more ef-
fectively utilize parallelization and hence is much
faster to train.

The input sentences are tokenized using a byte-
pair tokenizer taken from OpenAI’s GPT model
(Radford et al., 2018). Byte-pair tokens have had
impressive performance in newer models and of-
fer better ways of dealing with rare words and
fixed vocabulary sizes. These input embeddings
are then added to a positional encoding because
without recurrent connections we must provide the
model with some information about the ordering
of tokens. As in the original paper we use the po-
sitional encoding functions:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

The final output of the last decoder block is fed
into a final linear layer with a softmax activation
function to get a distribution over the output vo-
cabulary.

The main architectural hyperparameters are the
number of encoder and decoder blocks, the dimen-
sionality of the input and output dmodel, the di-
mensionaility of the feed forward layers, and the

https://github.com/knowitall/openie
https://github.com/gabrielStanovsky/oie-benchmark
https://github.com/gabrielStanovsky/oie-benchmark

number of self attention heads. Our final model
has dimension 768, feed-forward dimension 1200,
6 self-attention heads, and 5 encoder and decoder
blocks. In total our model has 123,506,387 param-
eters. See (Vaswani et al., 2017) for more details
of the original architecture.

3.3 Training
In addition to using the tokenizer from OpenAI’s
GPT, we also use the pretrainined token embed-
dings to warm start our models as these embed-
dings were the result of a significant amount of
training on a bigger corpus. Our source and tar-
get vocabularies are about 35000 tokens. Because
of memory limits, the training set was split into
chunks and each chunk was run for 1-2 epochs.
We use the Adam optimizer (Kingma and Ba,
2014) with a decaying learning rate schedule. We
apply dropout to linear layers with 0.1 drop proba-
bility. Additionally, as the original authors we em-
ploy label smoothing with values εls = 0.1 which
makes the model more unsure but has been shown
to improve accuracy.

We trained the model over 4 days on a sin-
gle Nvidia K80 with 12 GB of vRAM. We had
a batch size of 9000 tokens where batches were
sorted by sentence length to minimize the number
of padding tokens to maximize efficiency. In total,
our model received processed over a billion tokens
during training.

4 Evaluation

Similarly to Cui et al., we used the large
gold benchmark corpus introduced by (Stanovsky
and Dagan, 2016), with 3200 sentences from
Wikipedia and the Wall Street Journal that has
10,359 extractions. We test the performance of
different configurations of our model as well as 5
other prominent Open IE systems: ClausIE, OL-
LIE, OpenIE-4, PropS, and Stanford (See Section
2). For each sentence, our extraction was lined up
with multiple gold extractions and the extraction
was considered valid if it achieved a high enough
lexical coverage of the reference (defined by the
percentage of words covered). Subsequently, the
precision and recall of our system were analyzed
on different confidence thresholds, and the area
under the PR curve calculated.

More specifically, recall is defined by

True in what’s covered by our extractor
True in gold extractions

(1)

Figure 2: The Precision-Recall (P-R) curve of 4
different configurations of our transformer model

Figure 3: The Precision-Recall (P-R) curve of our
transformer model and 6 other Open IE systems

and precision is defined by

True in what’s covered by extractor
What’s covered by extractor

(2)

The confidence scores of our extractions come
from the softmax distribution from the transformer
decoder. We try different configurations of con-
fidence, assigning to it the mean, minimum, or
some percentile of the output probabilities during
decoding.

5 Results

It is observed from the Precision-Recall curve
(Figure 3) that our transformer model performs
significantly better than 4 of the 5 existing rule-
based Open IE systems and achieves compara-
ble results with the current best systems OpenIE-
4 as well as NeuralOpenIE in (Cui et al., 2018).
The Transformer 5per model where confidence

is computed by taking the 5th percentile value
of softmax probabilities of all tokens in the out-
put achieves the best Area under Precision-Recall
Curve (AUC) score among all configurations we
tested. It’s worth noting that in the Trans-
former prob 1 model, we set confidence scores to
be 1 for all extractions, similar to Stanford Open
IE system (which assigns confidence of 1 to 94%
of its extractions). Consequently, the correspond-
ing curve appears linear and has a low precision
above 20% recall. None of our models achieves
a recall as high as some other systems (noticeably
ClausIE, which is best at recall) because our model
only produces one extraction per sentence.

We observed many cases in which our trans-
former is able to correctly identify the boundary
of arguments but OpenIE-4 cannot, for instance:

Input As a group , the team was enshrined
into the Basketball Hall of Fame in
1959 .

Gold the team ||| enshrined ||| into the Bas-
ketball Hall of Fame

OpenIE-4 the team ||| was enshrined into ||| the
Basketball Hall of Fame

Transformer the team ||| was enshrined ||| into the
basketball hall of fame in 1959

Input Certain fractional quantum Hall phases
appear to have the right properties for
building a topological quantum com-
puter .

Gold certain fractional quantum hall phases
||| have ||| the right properties for build-
ing a topological quantum computer .

OpenIE-4 certain fractional quantum hall phases
||| appear ||| to have the right proper-
ties for building a topological quantum
computer .

Transformer certain fractional quantum hall phases
||| to have ||| the right properties for
building a topological quantum com-
puter .

In the following instance, our transformer is
able to correctly replace an ambiguous pronoun
in an argument with what it’s referring to but
OpenIE-4 cannot.

These cases illustrate the generalization capa-
bility of our model. Not limited by hand-crafted
patterns from other NLP tools, the transformer
model reduces the error propagation effect and
thus achieves better accuracy.

Input These are known as Porter ’s three
generic strategies and can be applied to
any size or form of business .

Gold Porter ’s three generic strategies ||| can
be applied to ||| any size or form of busi-
ness

OpenIE-4 These ||| can be applied to ||| any size
or form of business

Transformer Porter ’s three generic strategies ||| can
be applied ||| to any size or form of busi-
ness

6 Analysis

6.1 Extraction Quality

In general the extractions are pretty good 3, es-
pecially for shorter sentences with simpler clause
structures. As the length and complexity of the
sentence grows, the extractions are still sensible,
but aren’t as useful. For instance in a long com-
plicated sentence it is common to segment the pri-
mary to-be verb and have the arguments as very
long clauses. While still being a somewhat valid
extraction, it isn’t useful to have clause level spans
as entities in a knowledge graph.

Additionally, another pre/post-processing step
that would need to be included to make a sentence
level extractor more useful is a pronoun resolver.
Sentences with extracted pronouns would have to
be considered in their context so that the pronouns
can be resolved to their proper antecedent.

6.2 Architecture

Because of the cost of training (both in time and
dollars) it was not feasible to fully train many dif-
ferent configurations of the model and pick the
best one. However, at the onset, we did a few
small scale tests to discern what a good archi-
tecture might look like. Our experiments sug-
gested having extra heads seemed to help perfor-
mance without affecting convergence, but having
a large feed forward dimension severely hurt con-
vergence. Unfortunately, it is difficult to deter-
mine whether the performance differences were
caused by a lack of training time for larger models.
Additional experiments are need to determine the
optimal architecture but recent advances in NLP
suggest bigger is better and the size of the data set
would support training a larger model. We make
our model architecture and weights publicly avail-
able. 4

3 Test set extractions
4https://github.com/wesg52/NOIE

https://github.com/wesg52/NOIE/blob/master/outputs/output_final_5per_fixed.txt
https://github.com/wesg52/NOIE

6.3 Runtime

On the test set containing 3200 sentences, run on a
Nvidia 1060 GPU with 6GB of vRAM, our model
takes about 206 seconds to find all extractions and
compute their probability values. Note, the limit-
ing factor for speed is vRAM, as this is what dic-
tates the maximum batch size we can run. Batch-
ing significantly reduces runtime as it parrallelizes
the model computation. For this reason our model
benefits significantly from a more powerful com-
putational setup and has the potential to be faster
than any other state of the art approach with suf-
ficient computational power. The downside is that
without a GPU extraction can take up to 8400 sec-
onds. Further time reductions can be made with
more sophisticated batch decoding and other data
transfer optimizations.

6.4 Recall

Despite the superior accuracy of our system, our
main weakness is with recall. Because we can
only make 1 extraction per sentence, our ap-
proach is inherently limited on a data set with over
10000 triples and 3200 sentences. One potential
workaround of this limitation, keeping within our
general approach, is to use something akin to a
modified beam search decoding, basically a par-
allel hypothesis greedy search. The modification
would be to start the search with an initial set
of candidates that already contain the first token
of candidate arguments. The search would then
decode each candidate into its most likely triple.
Each fully decoded candidate would be associ-
ated with a probability value as before. This value
could be used as a threshold, and then we can take
the k candidates that achieve this threshold.

7 Conclusion and Future Work

We believe that our results show that a neural ap-
proach to open information extraction using trans-
formers is a good approach worthy of further re-
search. With more training time and computation
resources our model would have only done better
as we could only pass through the full training set
once. Additionally, using a bigger model or doing
more sophisticated tuning of the architecture pa-
rameters would also further improve our results.

Other self-attention neural approaches that
would be worth investigating are using just a trans-
former decoder architecture (Liu et al., 2018) as
they are more parameter efficient or fine-tuning a

BERT language model (Devlin et al., 2018) to do
token classification.

Besides further improving performance, the
main problem that our approach has is its inabil-
ity to scale to multi-sentence extractions or multi-
ple extractions per sentence. This problem is the
subject of future research.

Acknowledgments

We thank Professor Claire Cardie for her great
class and her advice on our problem formulation
and approach. We also appreciate the suggestions
and help from Xinya Du on our approaches to the
Open IE problem.

References
Michele Banko, Michael J Cafarella, Stephen Soder-

land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In IJ-
CAI. volume 7, pages 2670–2676.

Lei Cui, Furu Wei, and Ming Zhou. 2018. Neu-
ral open information extraction. arXiv preprint
arXiv:1805.04270 .

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In Pro-
ceedings of the 22nd international conference on
World Wide Web. ACM, pages 355–366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 .

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the conference on empir-
ical methods in natural language processing. Asso-
ciation for Computational Linguistics, pages 1535–
1545.

Arzoo Katiyar and Claire Cardie. 2017. Going out
on a limb: Joint extraction of entity mentions and
relations without dependency trees. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers). pages 917–928.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and
Noam Shazeer. 2018. Generating wikipedia by
summarizing long sequences. arXiv preprint
arXiv:1801.10198 .

Mausam Mausam. 2016. Open information extraction
systems and downstream applications. In Proceed-
ings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence. AAAI Press, pages
4074–4077.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf .

Gabriel Stanovsky and Ido Dagan. 2016. Creating a
large benchmark for open information extraction.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing. pages
2300–2305.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). pages 885–
895.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems. pages 5998–6008.

A Contributions

A.1 Joint
We both worked on coming up with the final prob-
lem formulation and determining the hyperparam-
eters for the transformer architecture. We also
conducted the literature review together to learn
about existing approaches and what data sets were
available.

A.2 Wes Gurnee
My focus was on the model and training. I adapted
an implementation of the transformer to suit our
need and integrated the OpenAI tokenizer and to-
ken embeddings. I was responsible for preparing
the data and training the model on Google Cloud. I
implemented our data loading mechanisms as well
as our batch decoding and worked on the post-
processing.

A.3 Ziwei Gu
My focus was on evaluation and analysis. I ap-
plied the trained model to a large benchmark
dataset and evaluated the model through samples
and PR curves. I also worked on formatting the
extractions and some post-processing.

B Examples

Input Ballast tanks are equipped to change a
ship ’s trim and modify its stability .

Gold Ballast tanks ||| equipped to ||| change
a ship ’s trim and modify its stability

Transformer Ballast tanks ||| are equipped ||| to
change a ship ’s trim and modify its sta-
bility

Input In Taiwan , the locals speak a version
of the Minnan language which is called
Taiwanese .

Gold the locals ||| speak ||| a version of the
Minnan language which is called Tai-
wanese

Gold version of the Minnan language |||
called ||| Taiwanese

Transformer the minnan language ||| is called ||| tai-
wanese

Input In 2004 it was expected that redevel-
opment work in the remaining subway
would probably obliterate what remains
exist .

Gold what remains exist ||| would be obliter-
ated

Transformer redevelopment work in the remaining
subway ||| would probably obliterate |||
what remains exist

Input The town and surrounding villages
were hit by two moderate earthquakes
within ten years .

Gold two moderate earthquakes ||| hit ||| the
town and surrounding villages

Transformer the town and surrounding villages |||
were hit ||| by two moderate earth-
quakes within ten years

Input There were 22.2 % of families and 23.8
% of the population living below the
poverty line , including 15.8 % of un-
der eighteens and 37.5 % of those over
64 .

Gold 22.2 % of families ||| living ||| below
the poverty line

Gold 23.8 % of the population ||| living ||| be-
low the poverty line

Transformer 22.2 % of families and 23.8 % of
the population ||| living ||| below the
poverty line

