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ABSTRACT 
Researchers have investigated a number of strategies for capturing 
and analyzing data analyst event logs in order to design better tools, 
identify failure points, and guide users. However, this remains chal-
lenging because individual- and session-level behavioral diferences 
lead to an explosion of complexity and there are few guarantees 
that log observations map to user cognition. In this paper we in-
troduce a technique for segmenting sequential analyst event logs 
which combines data, interaction, and user features in order to 
create discrete blocks of goal-directed activity. Using measures of 
inter-dependency and comparisons between analysis states, these 
blocks identify patterns in interaction logs coupled with the cur-
rent view that users are examining. Through an analysis of publicly 
available data and data from a lab study across a variety of analysis 
tasks, we validate that our segmentation approach aligns with users’ 
changing goals and tasks. Finally, we identify several downstream 
applications for our approach. 

CCS CONCEPTS 
• Human-centered computing → Visual analytics; • Informa-
tion systems → Users and interactive retrieval. 
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1 INTRODUCTION 
Interactive visual analytics tools for exploratory visual analysis 
(EVA) help to support analysts as they explore large scale, complex 
datasets by augmenting human capacities for information storage 
and processing. With computational support, analysts can explore 
many more points and data attributes in a session than they could 
manually inspect. By providing visual representations which more 
efciently present data and afording interactions which aide in 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specifc permission 
and/or a fee. Request permissions from permissions@acm.org. 
CHI ’21, May 8–13, 2021, Yokohama, Japan 
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00 
https://doi.org/10.1145/3411764.3445728 

encoding requests such as fltering into computational actions, EVA 
tools help analysts develop an understanding of their data. Interac-
tion, in particular, is key because an analyst’s understanding of the 
data is not developed instantaneously, but rather over a period of 
time. Analysts speculate, gather evidence, (dis)prove hypotheses, 
and make presentations or summary fndings over many iterations. 
Efective EVA tools help to hasten this iteration by providing ana-
lysts a means to quickly inspect and manipulate data. 

However, the same features which augment analysts’ exploration 
of data can also make it difcult for them to track their progress [12]. 
Further, tools may unwittingly introduce biases into the process 
which may be hidden by rapid iterations [60]. Once an analysis is 
complete, it may be hard for an analyst to recall all of the steps that 
lead to their fndings, obscuring data provenance as well as slowing 
integration of new knowledge into practice [9]. As a result, there 
is a growing community of researchers investigating approaches 
for making sense of the stream of interactions an analyst conducts 
through an EVA tool. Event logs are difcult to manage - a suc-
cessful analysis may take take minutes or hours, during which the 
practitioner completes many operations per minute. Further, activi-
ties such as an analyst pausing and thinking or turning to external 
resources are not indicated in the data. Additionally, these log data 
are not necessarily comparable across users, datasets, and tasks. 

A number of approaches exist for processing behavioral traces 
of EVA sessions in order to deliver actionable results. These ap-
proaches range from identifying cognitive bias [60] to automatically 
constructing provenance data for an analysis [9]. Some tools employ 
hierarchical or graph-based structures to make inferences about 
higher level features. Hierarchies, while human-interpretable, re-
quire customization for tasks and may not reach sufcient levels of 
granularity on a sub-task (where a user is focusing on a specifc, 
small goal as part of a larger exploration) or session-level (where 
the focus is on an entire analysis session, composed of many goals) 
basis. On the other hand, graph-based models can abstract well 
across classes and deliver both retrospective data from their struc-
ture and prospective predictions for future sessions. However, their 
structure may be hard to interpret and can be swamped by large 
scale data since they are better suited to small-scale analysis. 

We introduce a parallel approach for creating higher level ab-
stractions from behavioral log data aimed at segmenting logs into 
blocks of goal-directed or task-oriented user behavior by approxi-
mating users’ current intentions and data coverage. Our technique 
integrates traditional signals from event logs, inferences about user 
exposure to data, and analysts’ data transformations as refected 
by their interface state in order to model the EVA process. Addi-
tionally, we analyse behavior over windows of time, detecting the 
revisiting of past states which mark looping behaviors during an 
EVA session that can indicate hypothesis testing or iterative im-
provement. Because we focus on identifying segments of activity, 
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we can provide simple abstract representations of one "block" of 
activity which explain the actions that occurred during a section 
of goal-directed user behavior (e.g. investigating the relationship 
between attributes α and β). While our approach lacks the predic-
tive ability of graph-based models and does not make inferences 
based on pre-defned patterns, it more efciently and accurately 
splits a streaming log of an analyst’s activities into segments of 
self-reported goal-directed behavior that might be used to power 
classifers to identify sensemaking process stages, recommend new 
avenues of exploration, or provide refective visualizations of an 
analyst’s EVA history. 

In this paper we describe our approach, Tessera, and its imple-
mentation. As a baseline, we compare its performance at segment-
ing workfows against two benchmark algorithms (hierarchical-
and graph-based techniques) using a publicly available dataset of 
goal-directed analysis. In order to further understand the connec-
tion between segments of EVA activity and users’ self-reported 
intentions, we assemble a new dataset of open EVA performed 
by both novices and skilled users using lab think-aloud studies 
and compare model performance using this new dataset. We fnd 
that Tessera outperformed benchmark algorithms both in terms 
of recognizing when analysts were shifting from one goal to the 
next and in terms of compressing log data into a more manageable 
scope. Finally, we outline potential extensions of our approach and 
downstream applications. We provide the following contributions: 
• We introduce Tessera, a framework for post-processing EVA 
event logs which considers data, cognitive, and temporal features 
to abstract user interactions into goal-directed activity segments. 

• We assemble a dataset combining think-aloud reports by analysts 
of varying skill levels with raw interaction event log data. 

• We conduct comprehensive experiments to demonstrate the ef-
fectiveness of Tessera compared to benchmarks. 
In the following sections we begin by outlining related literature 

in the EVA and databases communities. We then describe theoretical 
and technical details for Tessera. Through a public dataset and 
our own independently-gathered think-aloud data, we describe an 
evaluation of Tessera. Finally, we identify potential limitations and 
extensions. 

2 RELATED WORK 
In this section we outline several diferent threads of work that 
are related to exploratory visual analytics (EVA), provenance, and 
behavioral modeling. Our goal is not to exhaustively survey every 
attempt. Rather, we aim to identify some of the key threads that 
distinguish diferent techniques and connect them to our broader 
understanding of analytics. 

2.1 Exploratory Visual Analysis (EVA) 
EVA involves the active exploration of data using interactive, visual 
interfaces in order to derive insights or achieve specifc goals [61]. 
One aim for developers and researchers of EVA software is under-
standing the diferent goals, phases of exploration, and activities 
that individuals engage in while they conduct EVA. Understanding 
these features is of immense value when tracking the provenance of 
analysis results [51]. While the research community has examined 
how individuals direct their explorations, there is no dominant 

defnition of the task structure and goal-direction of EVA [9]. Re-
cent work pursues two major streams. On one hand, EVA can be 
considered generally as a practice of gaining insights from data 
[21, 31, 37], which does not necessitate that users come into the 
process with clearly defned starting goals and states. 

On the other hand, EVA can be characterized as a process of 
evolving from a starting state with vague goals towards more and 
more sophisticated representations [26, 62]. Gotz and Zhou [27] 
suggest that users switch between discovering insights and record-
ing insights. However, [28, 32, 49] argue that in EVA, users are 
engaging in iterative improvement which is fexible and may in-
volve mixing diferent activities. Moreover, based on the nature of 
the exploration (i.e. open-end tasks vs. focused analysis) the goal 
and task structure could difer substantially [3, 24, 59]. Additional 
work has focused on how these factors infuence the pace of EVA, 
going beyond the scope of goal orientation [33, 39]. 

Rather than debating between explicitly defned goals and evolv-
ing goals, some recent advances have changed focus towards task-
level behavior and user behavior at diferent levels of granularity. 
If an overarching goal is hard to explicitly defne, then it might 
be easier to decompose the analysis into a series of smaller, more 
tractable units. This is the track that we take in the development of 
Tessera. We don’t intend to produce a full hierarchy of the EVA’s 
goal or motivation structure. Rather, we hope to identify task-level 
units which ft together to describe a priori what happened in a 
session in more tractable and generalizable form. 

2.2 Mining the EVA Process 
In psychology and cognitive science a number of papers have ex-
plored how individuals reason about data and develop fndings or 
insights based on their investigations [34, 50]. Often, this work dis-
cusses task- and session-level features such as goal orientation and 
iteration by individuals. Following along these lines, researchers 
in the interactive visualization community have proposed parallel 
frameworks describing how individuals use tools to reason about 
data [9]. One focal point of this work is abstraction. While low-
level interactions are often the atomic elements of observation, the 
meaningful factors that describe how a user is reasoning about 
their data lay at a much higher level of abstraction, necessitating 
techniques for bridging the gap. For example, a semi-automated 
framework [27] captures low-level interactions in visual systems 
and abstracts them into sub-task units. Researchers have made a 
case that many general goals can be decomposed into sub-task 
elements [37] (which later map to atomic interactive or cognitive 
units). There are also strategies for modeling EVA interactions not 
in terms of goal-specifc units but in terms of generalizable patterns 
across all investigations. Heer et al. [32] propose a task model for 
Tableau which connects interactions with fve categories of visual 
exploration steps. In the domain of image editing, [40] also pro-
posed data-driven approaches to identify a user’s breaking points 
to reveal their intentions at various parts of the process. 

Approaches for abstracting analysis steps into tasks or gener-
alizable units is a growing area of focus in HCI, data manage-
ment/mining, and machine learning. The potential benefts of these 
approaches are clear - they may contribute general knowledge about 
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how individuals reason about data and digital systems [50]; repre-
sent opportunities for new, benefcial cognitive interventions[60]; 
encode data that can guide automated systems [17, 22, 23]; and 
ofer new ways to help users disseminate or track their analyses [9]. 
The general intuition is to segment or connect the series of small 
interactions logged in the visual system to understand the paths or 
patterns that a user employs while doing EVA [18, 43, 56]. 

2.3 Modeling Behavioral Data 
The logged steps of an EVA session using an interactive system are 
essentially a time series stream of interaction events [31]. Sequences 
in the time series potentially encode higher level semantic meaning 
(e.g. goal-directed behavior) and patterns highlight higher-level 
structures (e.g. iteration) [11, 26, 31]. Recent research has proposed 
techniques for identifying common patterns in event sequences 
[26] and sub-sequences [11]. [62] leverages interaction events to 
generate visualization recommendations. Similarly, [10] computes 
a common sub-sequence from a sequence of interactions to pre-
dict the following interactions. However, prior research suggests 
that relying solely on interaction sequences may not capture more 
complex, global features of an analysis [20, 51]. To capture more 
complex structures, recent approaches [17, 22, 26, 27] turn towards 
more complex representations of user behavior which attempt to 
characterize the deeper semantic meanings underpinning segments 
of user activity. For example, such approaches construct state-based 
representations which may be easier to encode/decode and reveal 
complex structural information through their own organization 
(e.g. connectivity in a graph). 

One common technique makes use of a hierarchical model [5, 
55]. A taxonomy hierarchically defnes the relationship between 
tasks, sub-tasks, actions and events [27]. The underlying idea is to 
organize the low-level sub-goals into higher level ones. However 
this approach requires manual labeling and taxonomy adaptation 
for specifc applications. It also may be the case that behavioral 
sequence data cannot be cleanly binned into some hierarchical 
levels [18]. However, lower-level tasks in the hierarchy may be 
sufcient in order to derive benefcial fndings [13]. The importance 
of interactions between goals and low-level interactions is also 
highlighted in [8]. While the high granularity of these approaches 
may be benefcial, it does come at a cost of reduced global- or 
session-level information. 

Probabilistic approaches are another common strategy for model-
ing behavioral log data. Such techniques model transitions between 
interaction states [6, 42]. Often, these take the form of a Markov 
model or one of its siblings. By asserting that each lower-level 
event is the state symbol, a fnite Markov chain models the proba-
bilistic transitions between states. In this way, the model provides 
an ability to evaluate common patterns and loops in an analysis. 
However, the focus on transitions does come with risks [42]. On 
one hand, the underlying assumption that future states are con-
ditioned only on current states may not be consistent with prior 
work on sensemaking and information difusion [30, 65, 66]. On the 
other hand, when applying a probabilistic model for prediction, it is 
generally assumed that the users’ activities are independent which 
again might break with our understanding of analyst cognition. A 
similar markov-expression automata approach [18] was introduced 

to merge similar states and eventually output aggregated paths. 
However, this approach requires advanced partitioning of the logs 
in order to function. 

Machine learning models have also been employed to infer user 
activities from discrete log data. However, explainability of results 
and the potential feature explosion of a behavioral log state space 
make incorporating models challenging at present [23]. Addition-
ally, these models pose a greater risk that bias may be unwittingly 
encoded into the model due to the opacity of many machine learn-
ing algorithms [7]. 

In our work, we seek to ofer a complementary strategy for 
segmenting and modeling logs. We explicitly focus on sub-task and 
task segmentation, as these seem to be both the most commonly 
employed levels of granularity in analyzing/employing behavioral 
log data and have not been fully "solved" by the research community. 
While our approach may sufer similar issues on a global level as in 
hierarchical modeling, we have designed our method with an aim 
of enabling recursive application of the segmenting. In the future, 
we propose integrating multiple rounds of segmentation to create 
a hierarchical structure or connecting segments together to build 
aggregated probabilistic models. In this way, Tessera might beneft 
from some of the prior work done on segmentation. 

2.4 Connections to Other Research 
Communities 

Research advances in data management and data mining research 
provide further opportunities for improving behavioral analytics. 
Frequent pattern mining, a common approach for deriving frequent 
patterns in time series data and temporal data, has been adapted to 
web logs which share similar issues to EVA in terms of size, com-
plexity, and goal-directed behavior [4, 35]. EVA techniques have 
also been adapted and used in the database community for use 
cases such as improving data quality [58], generating meaningful 
intermediate visualizations [8, 38, 41], and human-in-the-loop inter-
active analysis [1, 45]. To support those applications on large scale 
data, database researchers have focused intensely on scalability. 
One research thread is approximate query processing [1, 2, 16, 48] 
which carefully constructs queries on strategic data regions instead 
of entire databases in order to give rapid results. Database learning 
predicts users’ incoming queries [25, 47] by leveraging and reusing 
previous query results, much like some applications of behavioral 
models in EVA. These approaches have primarily focused on prior 
query histories rather than per-session features. Grid-object dis-
covery in Explore-by-Example[19] proposed data operators that 
can be used for recommendation queries in the interactive data 
exploration. We take from this body of literature some of the con-
cepts from mining similar queries in order to improve the overall 
segmentation of Tessera. By examining data-level and behavioral 
time-series features simultaneously, we hope to better estimate the 
task-directed behavior of users. 

3 MODELING USER BEHAVIOR 
In this section, we describe the design of Tessera and outline the 
data features that we employ. In prior work, interaction logs have 
been modeled in order to gain insight into the analytics process. 
However, algorithms for processing logs have focused solely on data 
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Figure 1: User activities, recorded interaction log events in reduced SQL form, and data coverage for the analyst use case 
outlined in Section 3. The events describe 3 periods of activity in which a user explores distributions, identifes a target, and 
then examines that target with respect to new data attributes. 

transformations in the process or on modeling user activity. Less 
attention has been paid towards mapping relationships between 
user activity and data transformations during an analysis. 

In developing Tessera, we categorized user activities during EVA 
into diferent levels of granularity. Individual-level features refer 
to singular log events or short segments of events through which 
an analyst might identify usability issues or fnd patterns of use. 
However, given the number of logs could be very large, it is hard to 
evaluate individual-level, local features in isolation. On the other 
hand, session-level features, referring to a set of events for an entire 
analysis session, help to reveal global information about an EVA 
session such as bias or data coverage. While there are fewer ses-
sions in an event log dataset, they are much more complex than 
individual events and may represent multiple separate patterns 
of activity. In Tessera we aim between these two foci, focusing 
on smaller segments of activity which indicate sections of goal-
directed behavior within a session. We refer to these goal-directed 
segments of log activity as task- or sub-task level units of activ-
ity, depending on whether they are the few macro-scale blocks of 
goal-directed behavior during a session (e.g. identifying outliers) 
or the plethora of smaller blocks of behavior used to accomplish 
those goals (sub-tasks, e.g. identifying outliers by examining the 
distribution of attribute A). 

In Tessera we consider both visual elements (as mapped to data 
by visual channels) as well as the interactions themselves as repre-
sentations and manipulations of the underlying queries made to the 
data by the user. Through this formalism we attempt to remain ag-
nostic across diferent visualization systems and visual metaphors, 
with the caveat that our approach may neglect to consider the 
cognitive impact of a particular choice of visualization (such as a 
scatterplot drawing attention to outliers more efectively than a 
pie chart). We make this compromise not only because it is hard to 
estimate these factors by inference from interactions without a set 
of hard-coded heuristics, but also because a query-based formalism 
allows us to draw an advantageous connection between interaction 
events and the data themselves. One beneft of this approach is 
that in cases where one signal is weaker (e.g. the user is making 
small changes in an interface), the other signal may make up the 
diference (e.g. small interactions such as reconfguring data lead-
ing to large shifts in data coverage in the visual interface). This 
is especially useful when connecting user behavior across events 
in cases where adjustments in terms of visual metaphor (e.g. bar 
chart, scatterplot) do not actually afect the results of the under-
lying query of the data and coverage. However, pairing up these 
two features is non-trivial, and there will often be cases where 
one can be swamped with an explosion of measurable factors. In 
the following subsections we will outline how we construct query 
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Figure 2: Extracted components from a user query during an 
EVA session 

representations from interface log activities. Figure 1 shows user 
interactions, Tessera query representations, and a visualization of 
the space of data covered during several blocks of analyst activity, 
color-coded based on the Tessera segmentation. 

3.1 Constructing Data Transformations 
Imagine that an analyst is investigating a dataset of movie statistics. 
She is trying to fnd relationships between distribution companies, 
directors, genres, and the overall distribution of points in the dataset 
using an interactive exploratory visual analysis tool. The tool pro-
vides afordances for displaying points using a number of diferent 
chart designs as well as hooks for selecting, fltering, annotating, 
grouping, and styling points through interactive widgets. As system 
designers, we want to be able to examine her interactions with the 
tool in order to make inferences about her intentions. In our case, 
we might want to automatically generate a summary of her explo-
ration after the session completes or provide a real-time streaming 
display of her exploration process. 

Turning towards the event log data that we can easily gather 
from interactions with the tool, we can observe a few diferent 
factors. Figure 1 shows a few samples from this analyst’s exploration 
session. Note that in this case the user is interacting with widgets, 
but we are making use of the underlying data queries performed 
by the system, as represented by Tessera (their extraction will be 
described later in this section). Based on think-aloud feedback from 
this session, we know that in this particular moment the analyst 
was trying to observe some basic statistics. She investigated which 
distributor produced the most movies for each year after 2000 in 
the dataset (log events 1-3). After fnding that in this case Disney 
was the most prolifc (log event 4), she followed up by investigating 
their specifc revenue (log event 5). What inferences can we make 
about these interactions and their associated data? 

In order to make sense of the analyst’s coverage of data and in-
teractions, we visualized all of the data points of the movie dataset 
using a rectangular projection in the fgure. We can immediately 
observe that in the log-1 to log-3, the analyst was exploring the 
same information from an overview to average statistics. At step 
log-4, the target data region changed to the smaller blue region as 
the user tried to fnd the most prolifc distributor (Disney in this 
example). Armed with that new information at log-5, the analyst 
turned towards looking at Disney’s revenue across diferent years. 
The data transformation from black region, to blue, and fnally to 
green shows how the changing focus of the user corresponded 
to changes in data coverage. The dramatic shift in projected area 
between steps 3, 4, and 5 indicates that this is a moment of transi-
tion from one period of focused activity to another. By leveraging 
this information, it is possible for us to infer when users are mak-
ing small and large changes in their area of focus. However, it is 

challenging for us to abstract this level of information from the 
data transformation log, and moreover, to map it to a possible set 
of user activities (which can be informative in cases where the 
user is interacting but not changing data coverage across events). 
In order to merge information from this data coverage approach 
with specifc activities carried out in the analysis, we make use of 
a two-step approach: frst, we abstract user intention data from 
the log to understand users’ target data, focused attributes, and 
analysis stages; and second, we map this high-level information to 
a set of possible intended analysis tasks/activities derived from the 
literature. 

Figure 2 shows one example of a query from the analyst’s activi-
ties. The structure of this query reveals several important pieces of 
information about their investigation. The element, FROM Movie 
WHERE Year ≥ 2000, identifes the specifc data points that the ana-
lyst is inspecting. Further, the GROUP BY attributes, Distributor and 
Movie, gives us information about each data point on which the user 
might be focusing. One common task in EVA, fltering, is evident 
through the inequality observed earlier. One other factor at play in 
this query is the element, COUNT. This provides evidence of the 
specifc task that the analyst is conducting, and often relates to the 
particular stage of an analysis (e.g. overview frst, then drill-down) 
because these functions are used to compress and extract specifc 
statistical information for datapoints over selected attributes. By 
identifying three components in a logged data transformation: se-
lected data points, focused attributes and analysis functions, we can 
make inferences about the analyst’s EVA workfow. This rough 
signal, connected over time, helps to reveal changes in focus and 
coverage as illustrated in Figure 1. 
3.2 Selected Data and Focused Attributes 
As mentioned in the previous section, we can decompose user 
data exploration actions, as refected by their event log data, into 
multiple kinds of information. Examining query representations of 
analysts’ selection, flter, and aggregation actions, we can identify 
the kinds of data points that they are selecting and the attributes 
on which they are focusing. Practically speaking, this often simply 
takes the form of sub-setting rows and columns from a relational 
table, where data selection picks out rows and attribute focus picks 
out columns. In the frst stage of Tessera, we compare these subsets 
across multiple event log steps in order to identify diferences and 
commonalities. Later on, we can use these comparisons in order 
to estimate when an individual has infected from one segment of 
the analysis to the next, and identify the most essential events in a 
segment of activity. 

One intuitive way for us to achieve this comparison is to simply 
examine the exact data points and attributes involved at each log 
step. Given two pieces of log data, loд1, loд2, with associated data 
points DPloд1 , DPloд2 (e.g. picking out movies released after 2000) 
and attributes Attributesloд1 , Attributesloд2 (e.g. viewing revenue 
by year), we can defne a distance function to estimate the similarity 
between the pieces of log data: 

DPloд1 ∩ DPloд2DirectDistance(loд1, loд2) = α 
DPloд1 ∪ DPloд2 

Attributesloд1 ∩ Attributesloд2 
+ β 

Attributesloд1 ∪ Attributesloд2 
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Where α and β are weight parameters (s.t. α + β = 1) which can be 
set by users to bias the similarity score towards data- or attribute-
level similarity. We observe that often the focused attributes deliver 
more information about a user’s intentions compared to the cov-
erage of datapoints. One can argue that in many cases EVA tool 
afordances are oriented more towards selecting and aggregating 
across attributes rather than specifying data subsets. 

Moving beyond comparing individual data points using similar-
ity scores (a potentially naive approach in light of how EVA is actu-
ally conducted), the statistical meaning of a point distribution is crit-
ical in understanding connections between steps. If the user is look-
ing at focused attributes (whether or not the selected data points 
have also been changed), we can use statistical distance comparison 
techniques to measure the similarity between two selected data 
points within these attributes as StatDistance(Distributionloд1 , 
Distributionloд2 ). 

For example, we might want to use a Z -test[15, 44, 54] for nu-
merical data values for an attribute. For categorical data values and 
mixed data values, we can use frequency-based approaches such 
as a chi2[15, 44, 54] test to measure distance based on statistical 
diferences. 

In comparing event log steps on a data- and attribute-centric 
level, we can frst apply DirectDistance to measure the data trans-
formation similarity. When two log steps are focusing on the exact 
same attributes, we can further apply the statistical distance mea-
sure StatDistance . We will revisit these metrics when we employ 
them as components of Tessera’s fnal segmentation algorithm. 

3.3 Analysis Functions and User Activities 
Imagine that the following data transformations occurred during 
an EVA session: 

Q1 : AVG(budget) FROM movie GROUP BY Distributor 
Q2 : VAR(budget) FROM movie GROUP BY Director 
Q3 : Max(Budget) FROM movie GROUP BY Director 

A key diference between Q1, Q2, Q3 is the function employed 
to aggregate or summarize data values. Such functions are com-
mon in EVA, especially at large scales, as they allow an analyst 
to make sense of groups of data in aggregate. Most of these func-
tions are directly supported in mainstream database systems (other 
functions can also be implemented through user-defned function 
programming interface). An avg function may indicate an intention 
of exploring the expectation of data, while a var function might 
imply that the user is estimating the stability of the selected data. 
While these two functions both focus on aspects of distribution, 
analysts may also use functions such as max or top-n which select 
specifc points of importance for the analyst within the chosen data. 
Incorporating the statistical meaning of a query can help to trace 
how an analyst’s intentions towards the data change and gauge 
their overall understanding of the data as it evolves [62, 68]. The 
wrong choice of function may lead to potential misinterpretation 
and false discoveries [68–70]. On the other hand, we can observe 
changes in these functions across events to make inferences about 
when and how analyst intentions are changing, potentially signal-
ing a shift to a new segment of investigation. In order to accomplish 
this task, we consider these functional operations both in terms of 

Functions Interface Interactions Common Visualization Elements Common User Intentions

plot(col) plot Histogram,  bar chart, scatterplot Overview of dataset

Missing(col) plotting, filtering
Histogram, bar chart, pie chart, 
stacked bar chart, heatmap, binned 
box plot

Overview of dataset; count datapoints that are 
missing; data preprocessing; data quality 
examination

Sum(col) plotting, filtering, 
aggregating points Histogram, bar chart, scatterplot Overview of dataset; summarize information of 

groups

Avg(col)
plotting, filtering, 
aggregating points Histogram, bar chart, scatterplot Overview of dataset; summarize information of 

groups

Var(col)
plotting, filtering, 
aggregating points Histogram, bar chat, scatterplot Overview of dataset; examine stability of a data 

region; statistical inference

Count(col)
plotting, filtering, 
aggregating points

Histogram, bar chart, pie chart, 
stacked  bar chart, heatmap, binned 
box plot 

Overview of dataset; counting/comparing 
datapoints by condition or criteria

Max(col)
Min(col)
Top-k(col)

plotting, filtering, 
aggregating points, 
sorting points

Histogram, bar chart, pie chart, line 
chart 

Find the maximal/minimal/top-k value of 
selected data region; refine a search with 
endpoints; refine groups; finding particular 
instances; overviews

MaximalCount(col)
MinimalCount(col)
MostFrequent-k(col)

plotting, filtering, 
aggregating points, 
sorting points

Histogram, bar chart, pie chart, 
stacked  bar chart, heatmap, binned 
box plot 

Find the maximal/minimal/top-k value of 
selected data region; refine a search with 
endpoints; refine groups; get an overview of a 
dataset

Correlation(col1, 2)
plotting, filtering, 
aggregating points, 
sorting points

Correlation matrix, QQ-norma plot, 
box plot, histogram with regression 
line 

Understand the correlation of focused 
attributes in selected data regions; refine 
understanding of data relationships; get an 
overview of a dataset

Figure 3: Mapping of analysis functions and common inten-
tions, derived from prior research [58] and adapted for EVA. 

their mathematical implications and their cognitive/goal-directed 
factors. 

In order to generate a signal for Tessera to use, we frst consider 
the mathematical foundations of functions commonly used in data 
exploration programs. Specifcally, we focus on functions used for 
exploring distributions, selecting points, and aggregating informa-
tion. These functions are employed in a wide variety of contexts 
(see Figure 3 for functions we focused on in this study). 

In order to identify how similar two log events are in terms of the 
functions they use, we derive mathematical connections between 
statistical functions. We defne COL to be the entire data series of a 
column selected by the analyst (e.g. every movie box ofce return), 
and col to be an individual entry. For example, given two analysis 
functions, a(COL) and b(COL), we can derive b(COL) given the 
results of a(COL). Making use of the mathematical representations 
of the functions used in common EVA platforms, we constructed 
derivations. For example, we know that Sum(COL) can be rewritten 
as the product of the number of data points selected and the their 
average value: 

SUM(COL) ≡ N × AVG(col = x)

and variance can be rewritten as operations between expectation 
or average values: 

var(COL) ≡ N 2 × var(col = x) ≡ N 2 × (E(col = x 2) − E(col = x)2). 

For Pearson’s relationship calculation, we can rewrite it as the 
fraction of variance and expectation: 

E[COL1 COL2] − E[COL1]E[COL2]
ρ(COL1,COL2) ≡ p p 

var(COL1) var(COL2)

In order to estimate the mathematical similarity between dif-
ferent analysis functions employed by an analyst and refected in 
their event log, we estimate the number of steps necessary to derive 
one from the other in terms of functions and values. For example, 
if we are comparing ρ(COL1,COL2) and var (COL1), we know in 
addition to var (COL1), we need expectation, so the functional sim-
ilarity term is 12 . We also calculate three values, E[COL1 COL2],p p 
var (COL1) and var (COL2), out of four, so the value similarity 

term result is 14 . In sum we can express the similarity between these 
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1 1two events as MathSim(ρ(COL1,COL2),var (COL1)) = 2 ( 4
1 + 2 )

in terms of analysis functions. In addition to this linear combina-
tion, we can also use loдa b form or entropy. This similarity metric 
allows us to capture the functional equivalency of diferent steps 
in an analysis. However, it neglects to consider the cognitive and 
behavioral aspects of each operation (i.e. the analyst’s intentions). 
We compute an additional score to account for these factors. 

In order to identify similarities between log events in terms 
of their human factors, we make use of prior work in EVA on 
analysis functions [58]. In this work, a team of researchers used 
semi-structured interviews to associate data analysis functions with 
specifc, self-reported analyst intentions. They then negotiated and 
discussed with users to come up with a fnal list. In our work we 
adapt this framework in order to evaluate similarity between event 
intentions (see Figure 3 for example functions and intentions). 

Using the framework, we constructed a rule-based model using 
intuitions from Jaccard Similarity [36, 57]. If, in two event log steps, 
analysts are using functions with similar labeled intentions, we as-
sume that their functions have high similarity. In order to compute 
a numeric value, we intersect the list of the union of intentions of all 
of the functions an analyst employed in a step with the intentions 
of another step, as listed in the prior work and adapted here. 

Intentionf un1 ∩ Intentionf un2
CoдSim(f un1, f un2) = 

Intentionf un1 ∪ Intentionf un2 

Putting the two components together, we compute the functional 
similarity between two log events using: 

FunSim(f un1, f un2) = α(MathSim(f un1, f un2)) 

+ β(CoдSim(f un1, f un2))

Where α and β are weight parameters (s.t. α + β = 1) which can 
be set by users to bias the similarity score towards mathematic- or 
intention-level similarity. 

3.4 Identifying Segments of Activity 
In the previous two sections we constructed several pairwise simi-
larity metrics for events. In this subsection we use these metrics in 
order to identify segments of activity within an event log. First, we 
compare log events and normalize results: 

Sim(loд1, loд2) = {DirectDistance(loд1, loд2) + StatDistance(loд1, loд2)} | {z } 
Data points and selected attr ibutes 

+ FunSim(f un1, f un2) . | {z } 
Analysis Functions 

(Larger similarity values imply that two event steps are more likely 
to be similar.) 

We noticed that in a real world scenario analysts tended to fo-
cus on one segmented task within a window of time. Considering 
human factors, analysts are more likely to focus on recent steps 
in an analysis as opposed to distant ones when directing their be-
havior on a step-wise level [14, 52, 63] (this, of course, difers on 
a session level where planning exhibits more complex integration 
[50]). This recency efect has an advantageous property for the 

application of our similarity metric – it is not necessary to compare 
across all of the states in an analyst event log. By setting the length 
of look-back time window K , we can reduce computational costs 
while maintaining reasonable segmentation results. The notion of 
recency also implies that the connection between event log states 
also might decay over time. In addition to summing pairwise simi-
larities in a window, we employed a temporal decaying function 
Decay(∆|i − j |) (from [63]) to re-weight each pairwise similarity 
result where ∆|i − j | is the temporal diference between two log 
events. Hence, given the length of time window K and loдi , we 
calculate the normalized sum of decayed similarity at most K 

2 steps 
before loдi and at most K 

2 steps after loдi . Thus, the fnal similarity 
score of each state Sloдi can be expressed as: 

i± KÕ21 K 
Sloдi = ( Decay(i ± 

2 
) · Sim(loдi , loдi± K ))

K 2
i 

Finally, in order to determine the bounds of a segment we use a 
simple heuristic. Given the threshold and within the time window, 
if the diference between pair-wise Sloдi , Sloдj is smaller or equal to 
the threshold m, Tessera considers that the analyst is focusing on a 
similar segment. We discuss the selection of K in our experimental 
evaluation. 

Additionally, analysts are often able to store or save the states 
they fnd interesting for the future revisitation [33]. However, re-
visitation doesn’t necessarily refect that one is changing their 
segmented goal – often it is only evidence of a comparison be-
tween present state and past state. In order to accommodate these 
afordances in log analysis (which side-trips analysts might make 
more generally), we use a continuous equality. Given one sequence 
of temporal log events {loд1, loд2, loд3, loд4, loд5}, if we fnd that 
Sloд1 ≡ Sloд2 ≡ Sloд4 ≡ Sloд5 , (whether Sloд3 is large or small with 
respect to other logs’ similarity scores), we can accept that those 
steps are focusing on one sub-goal. For example, at loд3 the analyst 
might have revisited the previous stored results to compare with 
the current results they just received. Figure 4 illustrates Tessera’s 
entire workfow. 

4 EXPERIMENTAL EVALUATION 
In order to estimate the overall efectiveness of Tessera with respect 
to diferent analysis tasks and other similar tools, we conducted a 
series of evaluations. Our core motivation is to determine whether 
Tessera and alternative algorithms can accurately identify when 
users are engaging in diferent segments of analysis activity on 
a granular level. While one might evaluate in terms of whether 
the model can predict the next event that a user will trigger (e.g. 
a probabilistic Markov model [42]), our interest is in higher level, 
task-directed behavior. We instead investigate whether a model can 
accurately predict breakpoints that indicate task-switching during 
a participant session. This indicates that the model is efectively 
segmenting the workfow. To do so, we make use of event log data 
that is paired with observational data. 

We evaluate the efectiveness of Tessera with respect to other 
existing approaches using two diferent datasets. First, we employ 
publicly available logs of analyst behavior, as recorded in inter-
face event logs, paired with think-aloud observations. These data 
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Figure 4: Individual exploration steps in EVA with paired user intentions, SQL representation, data coverage, and segmentation 
(color blocks) produced by Tessera. In this case, an analyst is investigating how diferent types of movies and directors connect 
to the distributors in a movie dataset. Beginning with a summary view (step 1), they use flters to call out specifc directors 
with whom they are familiar (steps 2, 3). As they explore, they reference an earlier view (step 4) to recall their scope. Tessera 
correctly identifes that this is a momentary switch and not a redirection. They return to their view in step 5, examining 
distribution. Armed with some candidate movie types, they switch to investigating distributors (step 6). 

contain fags that indicate that a user is switching between dif-
ferent segments of goal-directed activity. Second, we gathered a 
new dataset of analyst interface logs paired with think-aloud ob-
servations. While the frst dataset is primarily goal-oriented, as 
participants were directed to accomplish a specifc task, our sec-
ond dataset focuses on open exploration which may be more het-
erogeneous and unpredictable [9]. In both cases, we compare the 
performance of Tessera against two benchmarks - a hierarchical 
model and a graph-based model. We evaluate the performance of 
the models at predicting segments of activity using a variety of 
time windows in order to reduce the rate of false refections and 
expose a variety of diferent use cases for models (e.g. providing 
real-time feedback versus post hoc classifcation of sessions). 

Through our evaluation, we seek to answer the these questions: 
Q1: How performant is Tessera in real-world situations, and how 
does its performance compare to benchmarks? 
Q2: How is performance afected by model time windows, and 
where is the best accuracy/efciency compromise? 
Q3: Will Tessera efectively reduce the amount of logs by recogniz-
ing redundant segments of events? 
Q4: How is segmentation accuracy positively or negatively afected 
by data features, tool features, or task features? 

4.1 Prior Data and Benchmarks 
4.1.1 Cyber threat analysis dataset. Researchers from Texas A&M 
University gathered a series of data focused on a cyber threat analy-
sis task. Not only did they gather event log data of user interactions 
with a web-based analysis tool, but they also collected think-aloud 
participant responses in the form of transcripts, videos, and eye 

tracking data [43]. The dataset is available online 1. The participant 
reports indicate when participants switched between segments of 
goal-directed behavior. As the think-aloud data are paired with 
video timestamps, we were able to pair these indications with the 
event log data to create a dataset for evaluating Tessera. In the 
dataset, 8 participants were recruited for a 90-minute session study 
where they analyzed data from 2009 VAST Mini Challenge[29] 
using a visualization tool specifcally built for the study analysis 
(Fig 5 (a)). The dataset has approximately 250,000 events and 13 
think-aloud refections per participant. While some participants 
met more success, all engaged in goal-directed data analysis. 

In assembling our dataset pairing think-aloud observations with 
logged interface events, we observed that participant self-reports 
may refect some degree of latency between the logged system 
times and the times when participants verbalized a response. For 
example, a participant may be so immersed in the task that they 
forget to verbalize their thought process until prompted by the 
study proctor. This delay between recorded events induced by the 
need for the proctor to probe the participant may afect the quality 
of the ground truth data – even if a model accurately identifes 
task-switching behavior, it may not yet be reported. Further, there 
are also latencies between event logs and participants introduced 
by interface latency, delays in recording by the researcher, and 
potential ofsets in time-stamping after the session (e.g. due to 
diferences in system and researcher timekeeping). 

In order to characterize this potential latency on a participant-by-
participant basis, we matched video recordings with key moments 
in the event logs (e.g. a flter being triggered and reported). We use 
Tr to denote the time when the participant clearly expressed an 

1https://research.arch.tamu.edu/analytic-provenance 

https://1https://research.arch.tamu.edu/analytic-provenance
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Figure 5: (a) Analysis platforms used for the prior cyber 
threat analysis dataset (adapted from [43]), (b) Analysis plat-
forms for our national census income analysis dataset (mod-
ifed PoleStar[53]) 

activity in recorded logs, and Ts to denote the time stamp in the 
log when the activity was logged as an interaction. Latency error 
can be expressed as |Tr − Ts | ≤ ∆t . We found that latency was an 
issue in this dataset both due to the complexity of the task and 
the 90 minute duration. In our own lab we also observed latencies, 
though, informed by these results, we sought to minimize them 
when generating our own dataset. In both cases we compensate for 
latency by establishing a ∆t value for the ground truth test datasets. 

4.1.2 Benchmark approaches. So that it might be easier to interpret 
the fnal results of our evaluation, we created benchmarks. Our goal 
was to enable comparisons between predominant strategies for post-
processing event logs in order to extract higher level features. We 
implemented two diferent approaches: 

Hierarchical approach: One common strategy for modeling 
workfows makes use of a hierarchy of behaviors. Encoded into the 
HARVEST system, [27] developed a semi-automatic framework to 
characterize user behaviors. A key element of this strategy is the for-
malization Action =< Type, Intent , Parameters >. Type refers to 
visual analytic system interaction activities. Intents are pre-defned 
to capture the kinds of intentions that might occur when engaging 
in interactions during exploration. Parameters provide additional in-
formation about the previous two elements. The entire framework 
taxonomy and example can be found in Table 1 of [27]. To con-
struct a comparable framework for the two visual analytics systems 
employed in our evaluation, we adjusted the elements provided 
in the original work. We excluded annotate, brush create, change 
metaphor, pan and zoom types as they are not supported in either 
of the two visual systems used to collect data. To implement the 
approach, our team processed all annotations manually. 

Graph-based approach: Another strategy for modeling work-
fows centers around constructing network or graph-based struc-
tures out of sequences of events. Particular focus is placed on merg-
ing similar states to prevent an explosion of nodes. By employing 
the K-reversible algorithm to merge states, [18] create a simplifed 
graph structure refecting changing interface states. States that con-
vey a similar semantic action are merged together. Since [18] can 
set a K value to aggregate states that are similar, we adapt this to 
see whether this approach can identify sub-task structure across 
an entire analysis session. We adapt this approach, asserting that 
merged states represent a segment of directed exploration. Since 
K is a parameter here, we reported the best scoring results across 
variations of K in our re-implementation. 

4.2 Gathering Data for Open-ended 
Exploratory Analytics 

Though the cyber threat dataset refects one potential data analyt-
ics scenario, the dataset itself does not contain a rich variety of 
attribute- and record-level information which might be challenging 
for analysts to uncover. In this case, the analyst is challenged more 
with inferring connections between atoms of data than inspecting 
highly multidimensional points to identify trends. Additionally, the 
dataset concerns a relatively niche task which may not generalize 
to tasks common in broader exploratory data analytics literature, 
and focuses on goal-directed analysis which may not adequately 
extend to open-ended exploration of data [9, 21]. 

To better understand the efectiveness of Tessera in comparison 
to other approaches across all of exploratory data analytics, we 
gathered additional data. Using PoleStar, a well-studied interface 
for basic multivariate data analysis2[53], we gathered think-aloud, 
video, and interface event log data for 21 participants complet-
ing exploratory data analysis tasks in a laboratory environment. 
Participants engaged in open-ended exploration using a modifed 
version of PoleStar followed by semi-structured interviews. As in 
the previous dataset, think-aloud reports were analysed for sig-
nals of task-switching and paired with event log data (adjusted 
for latency) in order to generate testable ground truth data for our 
evaluation. In the following subsections we outline the details of 
our laboratory study. 

4.2.1 Study Design. All participants were recruited through a uni-
versity research participant pool and screened on prior exposure 
and experience with data analysis. We recruited individuals using 
a pre-screen so that we could have balanced groups of two cate-
gories of participants: 1) novices who do not have experience with 
working with data analytics beyond introductory university course-
work, and 2) skilled participants who at least have some practice 
conducting data analysis but have never analyzed our study dataset. 
Participants were binned into these groups based on threshold rules. 
We later made use of the pre-screen demographic responses as a 
comparison point in our post-survey analysis. 

In total, 21 individuals participated in our study. Of those partici-
pants, 20 completed the entire protocol and submitted usable survey 
responses. 1 participant chose to leave the session early and did not 
fnish the task. 8 participants identifed as male and 12 as female. 
All participants reported to be current university undergraduate 
students. 11 participants ultimately ft into our Skilled category and 
another 9 ft our Novice category. Participants had a 1/2 chance of 
being randomly selected for a post-session semi-structured inter-
view. Ultimately, 6 participants in each skill group participated in 
an interview. 

During our user study participants used PoleStar to complete 
an open-ended exploration task. They were instructed to explore 
a dataset of salaries in order to understand the factors that in-
fuence income. The salary dataset, commonly known as Adult3, 
collects anonymous national census information into 13 attributes 
and 40,000 records [67]. Participants in both groups were familiar 
with the attributes information collected in the dataset, though the 

2http://vega.github.io/polestar/ 
3https://archive.ics.uci.edu/ml/datasets/adult 

https://3https://archive.ics.uci.edu/ml/datasets/adult


CHI ’21, May 8–13, 2021, Yokohama, Japan Jing Nathan Yan, Ziwei Gu, and Jefrey. M Rzeszotarski 

proctor was on hand to explain any data attributes if the partici-
pant was unfamiliar. This open-sourced dataset has been widely 
studied in previous research (e.g. machine learning prediction, bias 
evaluation). No direct investigation goals were provided beyond 
that initial framing. 

To explore the dataset, participants made use of a version of 
PoleStar (see Figure 5 (b)) 4 modifed to gather additional event log 
data. PoleStar is a tableau-style data visualization system built upon 
a higher-level grammar Vega-Lite [53], which has been widely used 
in the research community. Its interface is relatively simple and 
straightforward, which minimized the training burden for partici-
pants. Further, its design focuses on assembling data attributes and 
adjusting flters, which map well to the kinds of signals Tessera 
and the benchmark models employ. While a richer, more fully fea-
tured tool would ofer additional expressability (and potentially 
environmental validity for industry practice), we view PoleStar as 
a compromise between the needs of our evaluation, training costs, 
and similarity to other existing analytics systems. 

Participants had 30 minutes to explore the data. Afterwards each 
participant was asked to answer two summary questions about 
their analysis experience. During the lab study session a researcher 
encouraged participants to verbalize their thought processes follow-
ing a traditional human-computer interaction think-aloud protocol 
[46], including but not limited to: what they were doing at this step, 
why they were doing it, and whether they were shifting from one 
task/goal to others. Participants received specifc instructions to be 
sensitive to changes in their goals or to moments when they were 
"shifting gears" to another part of their analysis. For example, one 
participant reported "I was choosing the sex attribute since I want 
to see how it afects people’s salaries". All of PoleStar’s interaction 
events as well as their verbalizations were recorded throughout the 
session. Additionally, the study proctor took timestamped notes to 
aide in later analysis of the think-aloud data. Participants who were 
randomly selected for a semi-structured post-interview were asked 
to refect on how they analyzed the data and to explain how the 
tool helped (or hurt) their ability to explore the data. In follow-up 
questions the participants were probed for specifc examples and 
evidence to support their reports. 

During the lab study, one research team member placed a times-
tamped marker in their log any time that the participant verbalized 
that they were shifting from one sub-task to another. To verify 
these markers, another research team member viewed the think-
aloud audio and video streams and compared timestamps. Similar 
to the prior cyber threat dataset [43], the moments of the topic/task 
change were encoded as an infective boundary between segments 
of goal-directed activity. For example, one participant was spending 
time interacting with the system, reporting, "I’m going to start play-
ing around with the system". This was marked as the beginning of 
one task segment. The moment when they said "I’m gonna start my 
analysis now", another marker was placed to indicate the switch to 
a new task segment. Another participant reported a task switch by 
thinking aloud, "I am now trying to understand how the increase 
of decrease of hours-per-week impact the salary level," and ended 
this task by saying "I am done with analyzing the relationship be-
tween hour-per-week and income label." Our PoleStar event logs 

4https://github.com/vega/vega-lite 

contained approximately 500 events and participants averaged 18 
infection markers per session. 

As in the cyber threat dataset, we evaluated the paired logs for 
latency introduced by participant reports, system features, and log-
ging. In our observation of lab study sessions, the average ∆t per 
individual was approximately 10 seconds, a degree of latency lower 
than that of the cyber threat observations. We believe that two 
factors are at play in this diference: (1) compared to the threat anal-
ysis sessions, our lab sessions duration was 30 minutes, reducing 
potential participant fatigue; (2) there may be diferences in how 
the think-aloud protocol was applied between studies. 

The feedback collected through our semi-structured interviews 
was used as evidence of possible sensemaking paths users were pur-
suing as they explored the data. As these qualitative recollections 
are not easily paired with the event logs and don’t naturally align 
to segments of think-aloud recordings, we report these separately 
in summary form. Primarily, we made use of the semi-structured 
interviews as a way to check the quality of our think-aloud data, 
as deviations between the participant refections and our think-
aloud logs might indicate a lack of reliability creeping into the 
study methodology. We did not observe any such misalignment, 
and make use of the qualitative feedback later in the paper as we 
discuss potential applications of Tessera. 

4.2.2 Final Dataset. We have made our fnal dataset publicly ac-
cessible in an open source repository 5. This dataset refects the be-
havioral traces of 20 participants, split by performance and aligned 
with think-aloud responses. Timestamped think-aloud reports al-
low for independent investigation of latency. When permitted by 
participants, we include qualitative response data from interviews. 

4.3 Evaluating Tessera 
4.3.1 Data processing. We conducted evaluations across our two 
datasets (Cyber Threat and Adult) and three tools (Tessera and 
two benchmark models). We make use of three diferent metrics 
in considering the overall performance of Tessera with respect 
to the other approaches. Precision, describing the fraction of task 
shifts returned by the model that match ground truth, helps us 
gauge whether the model is efective at recognizing task shifts 
while avoiding false positives. On the other hand, Recall describes 
the ratio of the total shifts in the ground truth and the amount of 
shifts that the model was able to identify. This highlights whether 
the model is sensitive to all kinds of task shifts, or if it misses a 
portion of them (which might lead to an interface that is blind to 
some kinds of behavior). Finally, we employ F-score, the harmonic 
mean of precision and recall, to gauge overall performance of the 
models. For our model setting, we set the threshold to be m = 0.2, 
and we also observed that the threshold did not infuence the goal 
results signifcantly. 

Earlier in this section we mentioned that there is an observed la-
tency ∆t in logged shifting time stamps and the actual time in which 
a task shift occurred. To better validate our results, we considered 
a model response, T ′, to be correct if it was within T ± ∆t range 
of the ground truth time stamp, T . By varying this parameter, we 
can enforce more or less rigid adherence to the logged data. While 

5https://github.com/NathanYanJing/Tessera 

https://5https://github.com/NathanYanJing/Tessera
https://4https://github.com/vega/vega-lite
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Figure 6: Precision, Recall and F-score results of Tessera, hierarchical model, and graph-based model 

a large t might accommodate higher amounts of latency, it comes 
with the cost of potentially overstating the accuracy of a model. 
On the other hand, too low a t risks underestimating performance. 
As a result, we report across a variety of t values ranging from 
the latencies observed in the cyber threat dataset to zero latency 
(cyber threat has a larger range of windows as t was tuned for each 
dataset). Figure 6 illustrates the precision, recall and f-score of dif-
ferent approaches using diferent t . As anticipated, larger windows 
are associated with higher performance estimates. 

In Figure 6 we note that the Tessera achieves both the highest 
precision and f-score among the three approaches across all t values 
for the cyber threat dataset. In general, precision and f-score for 
Tessera exceeds that of the hierarchical approach by 0.15 and 0.13. 
Though our graph-based benchmark achieves the highest recall, 
its precision value is 10x smaller than the other two approaches, 
implying that the graph-based approach is overwhelmed when 
presented with a very large log, returning many false positives. The 
Tessera recall value is comparable and achieves a better balance 
between precision and recall, as indicated by the f-score. 

Figure 6 illustrates performance for our open-ended exploratory 
analytics dataset. We note that Tessera outperforms both other 
approaches in precision, recall and f-score. On average, the precision 
and f-score of Tessera outperformed the hierarchical benchmark by 
0.27 and 0.23. Unlike that of the cyber threat dataset, for our dataset 
the graph-based approach didn’t achieve the highest recall. Instead, 
it achieves better precision and f-score. This also implies that the 
graph-based approach scales better when given a smaller amount 
of log events. However, across diferent sizes of log events and tools, 
Tessera scales better. We will revisit this point in the compression 
efciency section below. Another interesting discovery here is that 

the average observed error latency ∆t is good enough for all three 
approaches to achieve reasonable performance. Thus, our fndings 
suggest that performance in Tessera with respect to Q1 is good. 

4.3.2 Sensitivity of time window. In order to better understand 
how the amount that Tessera looks back into logs afects perfor-
mance and efciency (Q2 in our evaluation plan), we varied its 
time window, K . The time window was motivated by the common 
need for users to revisit past interface states (e.g. in PoleStar user 
might bookmark previous interesting discoveries and revisited the 
results some time later in the following exploration). A window 
allows for comparisons between the current state, previous states, 
and later states. However, larger windows come with potential 
costs in terms of efciency. Our goal was to identify if and when 
the model performance converges towards an asymptotic "sweet 
spot". Convergence for a smaller value of K would indicate that 
there is a "sweet spot" which balances between the risk of large 
time windows being overly inefcient and small time windows 
neglecting to detect revisiting and connected states. We examined 
Tessera’s f-score under diferent K values when observed latency 
error ∆t = 10s for Adult dataset and ∆t = 60s for the cyber threat 
dataset. Figure 7 shows that for both datasets, increasing K results 
in better performance. Further, the performance appears to reach 
an asymptote relatively quickly, and at a size for K that is computa-
tionally tractable. Tessera might not need a very large K to obtain 
a good f-score, however it is possible that K is dependent on user-
and task-level diferences (e.g. some tasks require more revisiting 
than others) that we have not yet observed. 

One goal of interaction sequence analysis and user behavior min-
ing is to simplify event log content. Aggregating similar states can 
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Figure 7: Sensitivity of K for pair-wise comparisons regard-
ing Tessera’s performance 

make analyzing results easier and lead to better model generalizabil-
ity [18]. In order to gauge how well Tessera and our benchmarks 
simplify data, we measure the compression efciency of the result-

#der ived seдments ing models, . The lower the compression ratio, #or iдinal loд events 
the simpler the end representation. As a result we used a fxed 
K = 20 for Tessera in the rest of the experimental evaluation. 

4.3.3 Measuring compression eficiency. In Q3 of our evaluation 
agenda, we considered whether one approach would provide better 
compression – an indicator that it was successfully eliminating 
redundant events. Figure 8 shows the compression ratio for the 
three approaches. Tessera outperforms the benchmarks across both 
datasets, though the hierarchical model outputs a comparable com-
pression ratio. Note that we introduce a scale break in Figure 8a, as 
the graph-based approach performed approximately 100x worse in 
terms of compression for the frst dataset. This aligns with some of 
our earlier fndings regarding the approach’s inability to handle the 
large stream of events from a long session. One explanation for this 
is that the graph-based approach was over-ft for singular scenarios 
and not for an entire analysis log. Figure 8(B) shows that all three 
approaches achieve more comparable compression rates for our 
dataset which has fewer log events, however Tessera outperforms 
the other approaches by 0.23. 

4.3.4 Qalitative reports. We collected qualitative data in the form 
of participant reports during think-alouds as well as in our semi-
structured post-interviews in order to understand in depth how 
users conducted their evaluation (Q4). As our participant interview 
pool was limited, we did not code results or apply a formal qualita-
tive research protocol. Instead, in this section we outline some of 
the general trends and themes we observed among participant re-
sponses which refect on some of the quantitative fndings reported 
earlier in this section. 

Participants, in general, did show evidence of looping, sensemak-
ing behavior [50], as refected in schematic form in Figure 9. Though 

Figure 8: Compression rates for Tessera and benchmarks 

Figure 9: Schematic view of a common analysis path for par-
ticipants examining the Adult dataset. 

participants did not report that their analysis process involved a 
formal series of subtasks, they did report that they switched be-
tween evidence-seeking and hypothesis generation. “I was trying 
to fnd the relationship between income and gender, and moved to 
another pair after seeing something". Participants followed leads 
and iterated on fndings. Examining event logs, participants re-
visited previous states frequently, providing further evidence of 
looping behavior. “I want to see whether the relationship between 
salary-level is consistent with their degree levels". This points to 
one potential application of our segmentation strategy - helping 
participants refect on individual hypotheses or segments of activ-
ity as they loop through multiple iterations or tracking participant 
progress through the sensemaking process. 

One other theme that emerged in our qualitative responses was 
a tension between open-ended exploration and goal-directed ex-
ploration. While participants reported that they felt free to follow 
whatever investigative leads they wished during our lab study ses-
sions, practically speaking the data that we received were not all 
that diferent from that of the cyber threat database other than 
diferences in session duration. One possible explanation for this 
is that, while participants had an open-ended tool, participants 
still felt that they had to achieve a specifc goal and directed their 
activities accordingly in a lab study environment with an assigned 
task (no matter how openly phrased). 

We also noted evidence of bias being encoded into analysts’ ex-
ploration process. Aligning with a growing body of literature on 
cognitive bias [60], we found evidence that participants fell victim 
to confrmation bias as they explored. Revisiting of previous states 
and similarity between individual interface activities suggests that 
as participants iterated, they often followed the same paths as they 
had previously. On a high level, these activities risk leaking into 
the structure of a simplifed representation of the analysis behavior. 
Revisiting and similar events can amplify parts of the simplifed 
task structure, potentially boosting parts of the analysis that were 
subject to bias. If these models are then used for downstream appli-
cations, they might risk encoding the same bias into future analyses. 

5 DISCUSSION 
Through our evaluation we found that Tessera outperformed bench-
mark approaches at task-level shifting detection. This is a promising 
initial signal that Tessera could be used for mining analyst inter-
action event logs for higher order information about the analysis 
process and the analyst engaging in it. Because we compute simi-
larity scores across segments of activity, we can potentially derive 
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additional signals from the scores themselves. For example, by 
sorting in terms of how much the scores contributed to the fnal 
similarity score, we can identify the particular stages of the anal-
ysis which contributed the most and the least information to the 
overall process. Similarly, if we notice a lack of divergence of scores, 
then this could indicate that the analyst is fxated on a smaller por-
tion of the data and may potentially be experiencing bias. Beyond 
similarity scores, there is a possibility that the segments and our 
summary metrics might be of use for providing real-time feedback 
and retrospective provenance information. 

However, there are several potential limitations both in the imple-
mentation of Tessera and in our evaluation. One theme throughout 
this paper has been the question of scalability across long sessions 
of analysis. As longer sessions are likely ones where provenance 
and real-time feedback would be of most value to the analyst, scale 
is an important issue to consider. When discussing sensitivity, we 
noted that the pairwise comparison of log points will lead to po-
tentially O(k2) cost for comparisons where is k is the number of 
log records within the time window. This lead to the necessary 
compromise between look-back ability and efciency. While apply-
ing efcient use of data structures may reduce the average cost to 
O(k ∗ loд(k)), it remains potentially intractable for longer data from 
longer sessions. On the other hand, k can be intentionally reduced 
as a trade-of between efciency and accuracy if real-time, stream-
ing feedback is necessary and extended for higher accuracy if more 
computation time is available. Additionally, other approaches sufer 
similar scale inefciencies and trade-ofs for system designers. 

Tessera may also not be taking advantage of all possible signals 
available to it. For instance, one might compute more complex 
metrics about steps of an exploration (e.g. causal chaining) which 
deliver more nuanced splits between segments. We might also 
integrate Tessera into other approaches (for example the approaches 
proposed by [37] and [18]) to garner a more comprehensive task-
level and sub-task understanding of an EVA session. 

Additionally, there are potential threats to generalizability in our 
experimental method. We note that the two datasets used in our 
think-aloud study are not identical, varying in size and complex-
ity. This lead to diferences in events recorded for processing by 
Tessera. The size of the behavioral dataset we gathered for Adult 
is smaller than the Cyber Dataset. Besides diferences in source 
data, one of the main reasons our new think-aloud Adult dataset 
is much smaller than cyber threat is because we did not create 
mouse movement events during our logging. The cyber dataset 
contains a large portion of mouse movement activities which was 
documented by its platform, though not used in our experiments. 
In addition to the feature collection diference, participants in our 
study (mimicking the time setup from existing work [64]) had less 
time to work than that of the cyber dataset. We think both datasets 
represent two diferent-but-commonly-encountered data analysis 
scenarios. While we believe these dataset diferences did not result 
in any noticeable infuence on our study outcomes, in the future we 
hope to explore how diferent logging and interaction afordances 
shape the overall efcacy of log processing tools like Tessera. 

Our evaluation focused on two diferent datasets gathered using 
a custom interface and PoleStar. In both cases, the interfaces were 
relatively rudimentary and may not accurately refect the interac-
tion afordances of an industry tool such as Tableau. We accepted 

this compromise as it reduced the training burden on participants 
and made logs easier to pair with think-aloud data accurately. In 
the case of a more sophisticated tool, the variety of events being 
triggered and additional kinds of data manipulations may stretch 
the capabilities of Tessera. Much like in our hierarchical benchmark, 
there may be a need for adaptation to system- or task-specifc fea-
tures. These systems might also throw more events per minute of 
activity, which could lead to aforementioned scalability issues. In 
terms of the datasets used for testing Tessera, there is the possibility 
that both interfaces forced participants into patterns of use which 
naturally comport better with Tessera than the other techniques 
evaluated. There is a need to evaluate Tessera with a wider variety 
of systems, tasks, datasets, and analysts. In particular, the question 
of whether goal-direction in EVA afects our results remains some-
what unresolved. While we intentionally designed our dataset task 
to be more open-ended, we noted that qualitative responses may be 
indicating a degree of goal-direction as a result of the study design. 
Increasing the variety of data processing tasks may help to resolve 
this question. 

As our think-aloud data encodes information about user inten-
tions and their current place in a sensemaking loop, we plan to 
add additional labels to our dataset to determine whether Tessera 
features are predictive of cognitive factors. For instance, can we 
label segments that correspond to "hypothesis verifcation" or "drill-
down" actions? If possible, this would enable better summarization 
of logs and could lead to a variety of feedback mechanisms ranging 
from automated presentations (i.e. activity labels and summaries 
of actions), progress visualizations (i.e. workfow dashboards), and 
real-time diagnostics for factors such as bias. 

There are a number of potential applications of Tessera within 
the EVA ecosystem. Foremost, because Tessera extracts a number 
of features for each segment (e.g. similarity between segments), one 
might build classifers that provide more detail about what is going 
on in an exploration. It is also possible that we can apply Tessera 
to other domains where users’ behavioral features are available. 
For example, we could apply Tessera in detecting crowd workers’ 
behavioral paths in solving tasks in aggregate, and fnding patterns 
among image editors [40]. 

6 CONCLUSION 
In this paper we described Tessera, a technique for identifying seg-
ments of goal-directed activity from interface event logs of data 
analysts engaging in EVA. We described an implementation of 
Tessera and conducted an initial evaluation against two benchmark 
algorithms (hierarchical- and graph-based techniques) through a 
public dataset of goal-directed analyst behavior. We then developed 
a methodology for gathering additional paired think-aloud and 
event log data for open-ended exploration, and conducted twenty 
participant sessions to assemble a dataset. Using this dataset, we 
compared model performance, fnding that Tessera successfully 
identifed task switching by participants and outperformed bench-
marks. We hope to build on this work in the future by classifying 
the resulting segments to characterize patterns of activity and in-
corporating Tessera into existing EVA systems as an additional 
method of giving analysts feedback. 
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